ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.49 by dl, Thu May 27 11:05:44 2004 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  This queue orders elements according to an order specified
13 > * at construction time, which is specified either according to their
14 > * <i>natural order</i> (see {@link Comparable}), or according to a
15 > * {@link java.util.Comparator}, depending on which constructor is
16 > * used. A priority queue does not permit <tt>null</tt> elements.
17 > * A priority queue relying on natural ordering also does not
18 > * permit insertion of non-comparable objects (doing so may result
19 > * in <tt>ClassCastException</tt>).
20 > *
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27 > *
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34 > *
35 > * <p>This class implements all of the <em>optional</em> methods of
36 > * the {@link Collection} and {@link Iterator} interfaces.  The
37 > * Iterator provided in method {@link #iterator()} is <em>not</em>
38 > * guaranteed to traverse the elements of the PriorityQueue in any
39 > * particular order. If you need ordered traversal, consider using
40 > * <tt>Arrays.sort(pq.toArray())</tt>.
41 > *
42 > * <p> <strong>Note that this implementation is not synchronized.</strong>
43 > * Multiple threads should not access a <tt>PriorityQueue</tt>
44 > * instance concurrently if any of the threads modifies the list
45 > * structurally. Instead, use the thread-safe {@link
46 > * java.util.concurrent.PriorityBlockingQueue} class.
47 > *
48 > *
49 > * <p>Implementation note: this implementation provides O(log(n)) time
50 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
51 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
52 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
53 > * constant time for the retrieval methods (<tt>peek</tt>,
54 > * <tt>element</tt>, and <tt>size</tt>).
55 > *
56 > * <p>This class is a member of the
57 > * <a href="{@docRoot}/../guide/collections/index.html">
58 > * Java Collections Framework</a>.
59 > * @since 1.5
60 > * @version %I%, %G%
61 > * @author Josh Bloch
62 > * @param <E> the type of elements held in this collection
63 > */
64 > public class PriorityQueue<E> extends AbstractQueue<E>
65 >    implements java.io.Serializable {
66  
67 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
67 >    private static final long serialVersionUID = -7720805057305804111L;
68  
69 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
69 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
70  
71 <    public boolean add(E x) {
72 <        return false;
71 >    /**
72 >     * Priority queue represented as a balanced binary heap: the two children
73 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
74 >     * ordered by comparator, or by the elements' natural ordering, if
75 >     * comparator is null:  For each node n in the heap and each descendant d
76 >     * of n, n <= d.
77 >     *
78 >     * The element with the lowest value is in queue[1], assuming the queue is
79 >     * nonempty.  (A one-based array is used in preference to the traditional
80 >     * zero-based array to simplify parent and child calculations.)
81 >     *
82 >     * queue.length must be >= 2, even if size == 0.
83 >     */
84 >    private transient Object[] queue;
85 >
86 >    /**
87 >     * The number of elements in the priority queue.
88 >     */
89 >    private int size = 0;
90 >
91 >    /**
92 >     * The comparator, or null if priority queue uses elements'
93 >     * natural ordering.
94 >     */
95 >    private final Comparator<? super E> comparator;
96 >
97 >    /**
98 >     * The number of times this priority queue has been
99 >     * <i>structurally modified</i>.  See AbstractList for gory details.
100 >     */
101 >    private transient int modCount = 0;
102 >
103 >    /**
104 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
105 >     * (11) that orders its elements according to their natural
106 >     * ordering (using <tt>Comparable</tt>).
107 >     */
108 >    public PriorityQueue() {
109 >        this(DEFAULT_INITIAL_CAPACITY, null);
110      }
111 <    public boolean offer(E x) {
112 <        return false;
111 >
112 >    /**
113 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
114 >     * that orders its elements according to their natural ordering
115 >     * (using <tt>Comparable</tt>).
116 >     *
117 >     * @param initialCapacity the initial capacity for this priority queue.
118 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
119 >     * than 1
120 >     */
121 >    public PriorityQueue(int initialCapacity) {
122 >        this(initialCapacity, null);
123      }
124 <    public boolean remove(Object x) {
125 <        return false;
124 >
125 >    /**
126 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
127 >     * that orders its elements according to the specified comparator.
128 >     *
129 >     * @param initialCapacity the initial capacity for this priority queue.
130 >     * @param comparator the comparator used to order this priority queue.
131 >     * If <tt>null</tt> then the order depends on the elements' natural
132 >     * ordering.
133 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
134 >     * than 1
135 >     */
136 >    public PriorityQueue(int initialCapacity,
137 >                         Comparator<? super E> comparator) {
138 >        if (initialCapacity < 1)
139 >            throw new IllegalArgumentException();
140 >        this.queue = new Object[initialCapacity + 1];
141 >        this.comparator = comparator;
142      }
143  
144 <    public E remove() {
145 <        return null;
144 >    /**
145 >     * Common code to initialize underlying queue array across
146 >     * constructors below.
147 >     */
148 >    private void initializeArray(Collection<? extends E> c) {
149 >        int sz = c.size();
150 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
151 >                                            Integer.MAX_VALUE - 1);
152 >        if (initialCapacity < 1)
153 >            initialCapacity = 1;
154 >
155 >        this.queue = new Object[initialCapacity + 1];
156      }
157 <    public Iterator<E> iterator() {
158 <      return null;
157 >
158 >    /**
159 >     * Initially fill elements of the queue array under the
160 >     * knowledge that it is sorted or is another PQ, in which
161 >     * case we can just place the elements in the order presented.
162 >     */
163 >    private void fillFromSorted(Collection<? extends E> c) {
164 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
165 >            queue[++size] = i.next();
166      }
167  
168 <    public E element() {
169 <        return null;
168 >    /**
169 >     * Initially fill elements of the queue array that is not to our knowledge
170 >     * sorted, so we must rearrange the elements to guarantee the heap
171 >     * invariant.
172 >     */
173 >    private void fillFromUnsorted(Collection<? extends E> c) {
174 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
175 >            queue[++size] = i.next();
176 >        heapify();
177      }
178 <    public E poll() {
179 <        return null;
178 >
179 >    /**
180 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
181 >     * specified collection.  The priority queue has an initial
182 >     * capacity of 110% of the size of the specified collection or 1
183 >     * if the collection is empty.  If the specified collection is an
184 >     * instance of a {@link java.util.SortedSet} or is another
185 >     * <tt>PriorityQueue</tt>, the priority queue will be sorted
186 >     * according to the same comparator, or according to its elements'
187 >     * natural order if the collection is sorted according to its
188 >     * elements' natural order.  Otherwise, the priority queue is
189 >     * ordered according to its elements' natural order.
190 >     *
191 >     * @param c the collection whose elements are to be placed
192 >     *        into this priority queue.
193 >     * @throws ClassCastException if elements of the specified collection
194 >     *         cannot be compared to one another according to the priority
195 >     *         queue's ordering.
196 >     * @throws NullPointerException if <tt>c</tt> or any element within it
197 >     * is <tt>null</tt>
198 >     */
199 >    public PriorityQueue(Collection<? extends E> c) {
200 >        initializeArray(c);
201 >        if (c instanceof SortedSet) {
202 >            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
203 >            comparator = (Comparator<? super E>)s.comparator();
204 >            fillFromSorted(s);
205 >        } else if (c instanceof PriorityQueue) {
206 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
207 >            comparator = (Comparator<? super E>)s.comparator();
208 >            fillFromSorted(s);
209 >        } else {
210 >            comparator = null;
211 >            fillFromUnsorted(c);
212 >        }
213 >    }
214 >
215 >    /**
216 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
217 >     * specified collection.  The priority queue has an initial
218 >     * capacity of 110% of the size of the specified collection or 1
219 >     * if the collection is empty.  This priority queue will be sorted
220 >     * according to the same comparator as the given collection, or
221 >     * according to its elements' natural order if the collection is
222 >     * sorted according to its elements' natural order.
223 >     *
224 >     * @param c the collection whose elements are to be placed
225 >     *        into this priority queue.
226 >     * @throws ClassCastException if elements of the specified collection
227 >     *         cannot be compared to one another according to the priority
228 >     *         queue's ordering.
229 >     * @throws NullPointerException if <tt>c</tt> or any element within it
230 >     * is <tt>null</tt>
231 >     */
232 >    public PriorityQueue(PriorityQueue<? extends E> c) {
233 >        initializeArray(c);
234 >        comparator = (Comparator<? super E>)c.comparator();
235 >        fillFromSorted(c);
236 >    }
237 >
238 >    /**
239 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
240 >     * specified collection.  The priority queue has an initial
241 >     * capacity of 110% of the size of the specified collection or 1
242 >     * if the collection is empty.  This priority queue will be sorted
243 >     * according to the same comparator as the given collection, or
244 >     * according to its elements' natural order if the collection is
245 >     * sorted according to its elements' natural order.
246 >     *
247 >     * @param c the collection whose elements are to be placed
248 >     *        into this priority queue.
249 >     * @throws ClassCastException if elements of the specified collection
250 >     *         cannot be compared to one another according to the priority
251 >     *         queue's ordering.
252 >     * @throws NullPointerException if <tt>c</tt> or any element within it
253 >     * is <tt>null</tt>
254 >     */
255 >    public PriorityQueue(SortedSet<? extends E> c) {
256 >        initializeArray(c);
257 >        comparator = (Comparator<? super E>)c.comparator();
258 >        fillFromSorted(c);
259 >    }
260 >
261 >    /**
262 >     * Resize array, if necessary, to be able to hold given index
263 >     */
264 >    private void grow(int index) {
265 >        int newlen = queue.length;
266 >        if (index < newlen) // don't need to grow
267 >            return;
268 >        if (index == Integer.MAX_VALUE)
269 >            throw new OutOfMemoryError();
270 >        while (newlen <= index) {
271 >            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
272 >                newlen = Integer.MAX_VALUE;
273 >            else
274 >                newlen <<= 2;
275 >        }
276 >        Object[] newQueue = new Object[newlen];
277 >        System.arraycopy(queue, 0, newQueue, 0, queue.length);
278 >        queue = newQueue;
279      }
280 +            
281 +
282 +    /**
283 +     * Inserts the specified element into this priority queue.
284 +     *
285 +     * @return <tt>true</tt>
286 +     * @throws ClassCastException if the specified element cannot be compared
287 +     * with elements currently in the priority queue according
288 +     * to the priority queue's ordering.
289 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
290 +     */
291 +    public boolean offer(E o) {
292 +        if (o == null)
293 +            throw new NullPointerException();
294 +        modCount++;
295 +        ++size;
296 +
297 +        // Grow backing store if necessary
298 +        if (size >= queue.length)
299 +            grow(size);
300 +
301 +        queue[size] = o;
302 +        fixUp(size);
303 +        return true;
304 +    }
305 +
306      public E peek() {
307 <        return null;
307 >        if (size == 0)
308 >            return null;
309 >        return (E) queue[1];
310      }
311  
312 <    public boolean isEmpty() {
312 >    // Collection Methods - the first two override to update docs
313 >
314 >    /**
315 >     * Adds the specified element to this queue.
316 >     * @return <tt>true</tt> (as per the general contract of
317 >     * <tt>Collection.add</tt>).
318 >     *
319 >     * @throws NullPointerException if the specified element is <tt>null</tt>.
320 >     * @throws ClassCastException if the specified element cannot be compared
321 >     * with elements currently in the priority queue according
322 >     * to the priority queue's ordering.
323 >     */
324 >    public boolean add(E o) {
325 >        return offer(o);
326 >    }
327 >
328 >    /**
329 >     * Removes a single instance of the specified element from this
330 >     * collection, if it is present.
331 >     */
332 >    public boolean remove(Object o) {
333 >        if (o == null)
334 >            return false;
335 >
336 >        if (comparator == null) {
337 >            for (int i = 1; i <= size; i++) {
338 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
339 >                    removeAt(i);
340 >                    return true;
341 >                }
342 >            }
343 >        } else {
344 >            for (int i = 1; i <= size; i++) {
345 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
346 >                    removeAt(i);
347 >                    return true;
348 >                }
349 >            }
350 >        }
351          return false;
352      }
353 +
354 +    /**
355 +     * Returns an iterator over the elements in this queue. The iterator
356 +     * does not return the elements in any particular order.
357 +     *
358 +     * @return an iterator over the elements in this queue.
359 +     */
360 +    public Iterator<E> iterator() {
361 +        return new Itr();
362 +    }
363 +
364 +    private class Itr implements Iterator<E> {
365 +
366 +        /**
367 +         * Index (into queue array) of element to be returned by
368 +         * subsequent call to next.
369 +         */
370 +        private int cursor = 1;
371 +
372 +        /**
373 +         * Index of element returned by most recent call to next,
374 +         * unless that element came from the forgetMeNot list.
375 +         * Reset to 0 if element is deleted by a call to remove.
376 +         */
377 +        private int lastRet = 0;
378 +
379 +        /**
380 +         * The modCount value that the iterator believes that the backing
381 +         * List should have.  If this expectation is violated, the iterator
382 +         * has detected concurrent modification.
383 +         */
384 +        private int expectedModCount = modCount;
385 +
386 +        /**
387 +         * A list of elements that were moved from the unvisited portion of
388 +         * the heap into the visited portion as a result of "unlucky" element
389 +         * removals during the iteration.  (Unlucky element removals are those
390 +         * that require a fixup instead of a fixdown.)  We must visit all of
391 +         * the elements in this list to complete the iteration.  We do this
392 +         * after we've completed the "normal" iteration.
393 +         *
394 +         * We expect that most iterations, even those involving removals,
395 +         * will not use need to store elements in this field.
396 +         */
397 +        private ArrayList<E> forgetMeNot = null;
398 +
399 +        /**
400 +         * Element returned by the most recent call to next iff that
401 +         * element was drawn from the forgetMeNot list.
402 +         */
403 +        private Object lastRetElt = null;
404 +
405 +        public boolean hasNext() {
406 +            return cursor <= size || forgetMeNot != null;
407 +        }
408 +
409 +        public E next() {
410 +            checkForComodification();
411 +            E result;
412 +            if (cursor <= size) {
413 +                result = (E) queue[cursor];
414 +                lastRet = cursor++;
415 +            }
416 +            else if (forgetMeNot == null)
417 +                throw new NoSuchElementException();
418 +            else {
419 +                int remaining = forgetMeNot.size();
420 +                result = forgetMeNot.remove(remaining - 1);
421 +                if (remaining == 1)
422 +                    forgetMeNot = null;
423 +                lastRet = 0;
424 +                lastRetElt = result;
425 +            }
426 +            return result;
427 +        }
428 +
429 +        public void remove() {
430 +            checkForComodification();
431 +
432 +            if (lastRet != 0) {
433 +                E moved = PriorityQueue.this.removeAt(lastRet);
434 +                lastRet = 0;
435 +                if (moved == null) {
436 +                    cursor--;
437 +                } else {
438 +                    if (forgetMeNot == null)
439 +                        forgetMeNot = new ArrayList<E>();
440 +                    forgetMeNot.add(moved);
441 +                }
442 +            } else if (lastRetElt != null) {
443 +                PriorityQueue.this.remove(lastRetElt);
444 +                lastRetElt = null;
445 +            } else {
446 +                throw new IllegalStateException();
447 +            }
448 +
449 +            expectedModCount = modCount;
450 +        }
451 +
452 +        final void checkForComodification() {
453 +            if (modCount != expectedModCount)
454 +                throw new ConcurrentModificationException();
455 +        }
456 +    }
457 +
458      public int size() {
459 <        return 0;
459 >        return size;
460      }
461 <    public Object[] toArray() {
462 <        return null;
461 >
462 >    /**
463 >     * Removes all elements from the priority queue.
464 >     * The queue will be empty after this call returns.
465 >     */
466 >    public void clear() {
467 >        modCount++;
468 >
469 >        // Null out element references to prevent memory leak
470 >        for (int i=1; i<=size; i++)
471 >            queue[i] = null;
472 >
473 >        size = 0;
474      }
475  
476 <    public <T> T[] toArray(T[] array) {
476 >    public E poll() {
477 >        if (size == 0)
478 >            return null;
479 >        modCount++;
480 >
481 >        E result = (E) queue[1];
482 >        queue[1] = queue[size];
483 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
484 >        if (size > 1)
485 >            fixDown(1);
486 >
487 >        return result;
488 >    }
489 >
490 >    /**
491 >     * Removes and returns the ith element from queue.  (Recall that queue
492 >     * is one-based, so 1 <= i <= size.)
493 >     *
494 >     * Normally this method leaves the elements at positions from 1 up to i-1,
495 >     * inclusive, untouched.  Under these circumstances, it returns null.
496 >     * Occasionally, in order to maintain the heap invariant, it must move
497 >     * the last element of the list to some index in the range [2, i-1],
498 >     * and move the element previously at position (i/2) to position i.
499 >     * Under these circumstances, this method returns the element that was
500 >     * previously at the end of the list and is now at some position between
501 >     * 2 and i-1 inclusive.
502 >     */
503 >    private E removeAt(int i) {
504 >        assert i > 0 && i <= size;
505 >        modCount++;
506 >
507 >        E moved = (E) queue[size];
508 >        queue[i] = moved;
509 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
510 >        if (i <= size) {
511 >            fixDown(i);
512 >            if (queue[i] == moved) {
513 >                fixUp(i);
514 >                if (queue[i] != moved)
515 >                    return moved;
516 >            }
517 >        }
518          return null;
519      }
520  
521 +    /**
522 +     * Establishes the heap invariant (described above) assuming the heap
523 +     * satisfies the invariant except possibly for the leaf-node indexed by k
524 +     * (which may have a nextExecutionTime less than its parent's).
525 +     *
526 +     * This method functions by "promoting" queue[k] up the hierarchy
527 +     * (by swapping it with its parent) repeatedly until queue[k]
528 +     * is greater than or equal to its parent.
529 +     */
530 +    private void fixUp(int k) {
531 +        if (comparator == null) {
532 +            while (k > 1) {
533 +                int j = k >> 1;
534 +                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
535 +                    break;
536 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
537 +                k = j;
538 +            }
539 +        } else {
540 +            while (k > 1) {
541 +                int j = k >>> 1;
542 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
543 +                    break;
544 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
545 +                k = j;
546 +            }
547 +        }
548 +    }
549 +
550 +    /**
551 +     * Establishes the heap invariant (described above) in the subtree
552 +     * rooted at k, which is assumed to satisfy the heap invariant except
553 +     * possibly for node k itself (which may be greater than its children).
554 +     *
555 +     * This method functions by "demoting" queue[k] down the hierarchy
556 +     * (by swapping it with its smaller child) repeatedly until queue[k]
557 +     * is less than or equal to its children.
558 +     */
559 +    private void fixDown(int k) {
560 +        int j;
561 +        if (comparator == null) {
562 +            while ((j = k << 1) <= size && (j > 0)) {
563 +                if (j<size &&
564 +                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
565 +                    j++; // j indexes smallest kid
566 +
567 +                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
568 +                    break;
569 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
570 +                k = j;
571 +            }
572 +        } else {
573 +            while ((j = k << 1) <= size && (j > 0)) {
574 +                if (j<size &&
575 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
576 +                    j++; // j indexes smallest kid
577 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
578 +                    break;
579 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
580 +                k = j;
581 +            }
582 +        }
583 +    }
584 +
585 +    /**
586 +     * Establishes the heap invariant (described above) in the entire tree,
587 +     * assuming nothing about the order of the elements prior to the call.
588 +     */
589 +    private void heapify() {
590 +        for (int i = size/2; i >= 1; i--)
591 +            fixDown(i);
592 +    }
593 +
594 +    /**
595 +     * Returns the comparator used to order this collection, or <tt>null</tt>
596 +     * if this collection is sorted according to its elements natural ordering
597 +     * (using <tt>Comparable</tt>).
598 +     *
599 +     * @return the comparator used to order this collection, or <tt>null</tt>
600 +     * if this collection is sorted according to its elements natural ordering.
601 +     */
602 +    public Comparator<? super E> comparator() {
603 +        return comparator;
604 +    }
605 +
606 +    /**
607 +     * Save the state of the instance to a stream (that
608 +     * is, serialize it).
609 +     *
610 +     * @serialData The length of the array backing the instance is
611 +     * emitted (int), followed by all of its elements (each an
612 +     * <tt>Object</tt>) in the proper order.
613 +     * @param s the stream
614 +     */
615 +    private void writeObject(java.io.ObjectOutputStream s)
616 +        throws java.io.IOException{
617 +        // Write out element count, and any hidden stuff
618 +        s.defaultWriteObject();
619 +
620 +        // Write out array length
621 +        s.writeInt(queue.length);
622 +
623 +        // Write out all elements in the proper order.
624 +        for (int i=1; i<=size; i++)
625 +            s.writeObject(queue[i]);
626 +    }
627 +
628 +    /**
629 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
630 +     * deserialize it).
631 +     * @param s the stream
632 +     */
633 +    private void readObject(java.io.ObjectInputStream s)
634 +        throws java.io.IOException, ClassNotFoundException {
635 +        // Read in size, and any hidden stuff
636 +        s.defaultReadObject();
637 +
638 +        // Read in array length and allocate array
639 +        int arrayLength = s.readInt();
640 +        queue = new Object[arrayLength];
641 +
642 +        // Read in all elements in the proper order.
643 +        for (int i=1; i<=size; i++)
644 +            queue[i] = (E) s.readObject();
645 +    }
646 +
647   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines