ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.3 by tim, Sun May 18 20:36:01 2003 UTC vs.
Revision 1.128 by jsr166, Sun May 6 23:29:25 2018 UTC

# Line 1 | Line 1
1 package java.util;
2
1   /*
2 < * Todo
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20   *
21 < *   1) Make it serializable.
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26 + package java.util;
27 +
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + import jdk.internal.misc.SharedSecrets;
31 +
32   /**
33 < * An unbounded priority queue based on a priority heap.  This queue orders
34 < * elements according to the order specified at creation time.  This order is
35 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
36 < * either according to their <i>natural order</i> (see {@link Comparable}), or
37 < * according to a {@link Comparator}, depending on which constructor is used.
38 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
39 < * minimal element with respect to the specified ordering.  If multiple
40 < * these elements are tied for least value, no guarantees are made as to
41 < * which of elements is returned.
42 < *
43 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
44 < * the array used to store the elements on the queue.  It is always at least
45 < * as large as the queue size.  As elements are added to a priority list,
46 < * its capacity grows automatically.  The details of the growth policy are not
33 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34 > * The elements of the priority queue are ordered according to their
35 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36 > * provided at queue construction time, depending on which constructor is
37 > * used.  A priority queue does not permit {@code null} elements.
38 > * A priority queue relying on natural ordering also does not permit
39 > * insertion of non-comparable objects (doing so may result in
40 > * {@code ClassCastException}).
41 > *
42 > * <p>The <em>head</em> of this queue is the <em>least</em> element
43 > * with respect to the specified ordering.  If multiple elements are
44 > * tied for least value, the head is one of those elements -- ties are
45 > * broken arbitrarily.  The queue retrieval operations {@code poll},
46 > * {@code remove}, {@code peek}, and {@code element} access the
47 > * element at the head of the queue.
48 > *
49 > * <p>A priority queue is unbounded, but has an internal
50 > * <i>capacity</i> governing the size of an array used to store the
51 > * elements on the queue.  It is always at least as large as the queue
52 > * size.  As elements are added to a priority queue, its capacity
53 > * grows automatically.  The details of the growth policy are not
54   * specified.
55   *
56 < *<p>Implementation note: this implementation provides O(log(n)) time for
57 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
58 < * methods; linear time for the <tt>remove(Object)</tt> and
59 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
60 < * <tt>element</tt>, and <tt>size</tt> methods.
56 > * <p>This class and its iterator implement all of the
57 > * <em>optional</em> methods of the {@link Collection} and {@link
58 > * Iterator} interfaces.  The Iterator provided in method {@link
59 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
60 > * are <em>not</em> guaranteed to traverse the elements of
61 > * the priority queue in any particular order. If you need ordered
62 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
63 > *
64 > * <p><strong>Note that this implementation is not synchronized.</strong>
65 > * Multiple threads should not access a {@code PriorityQueue}
66 > * instance concurrently if any of the threads modifies the queue.
67 > * Instead, use the thread-safe {@link
68 > * java.util.concurrent.PriorityBlockingQueue} class.
69 > *
70 > * <p>Implementation note: this implementation provides
71 > * O(log(n)) time for the enqueuing and dequeuing methods
72 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
73 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
74 > * methods; and constant time for the retrieval methods
75 > * ({@code peek}, {@code element}, and {@code size}).
76   *
77   * <p>This class is a member of the
78 < * <a href="{@docRoot}/../guide/collections/index.html">
78 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
79   * Java Collections Framework</a>.
80 + *
81 + * @since 1.5
82 + * @author Josh Bloch, Doug Lea
83 + * @param <E> the type of elements held in this queue
84   */
85 + @SuppressWarnings("unchecked")
86   public class PriorityQueue<E> extends AbstractQueue<E>
87 <                              implements Queue<E>
88 < {
87 >    implements java.io.Serializable {
88 >
89 >    private static final long serialVersionUID = -7720805057305804111L;
90 >
91      private static final int DEFAULT_INITIAL_CAPACITY = 11;
92  
93      /**
94 <     * Priority queue represented as a balanced binary heap: the two children
95 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
96 <     * ordered by comparator, or by the elements' natural ordering, if
97 <     * comparator is null:  For each node n in the heap, and each descendant
98 <     * of n, d, n <= d.
99 <     *
48 <     * The element with the lowest value is in queue[1] (assuming the queue is
49 <     * nonempty). A one-based array is used in preference to the traditional
50 <     * zero-based array to simplify parent and child calculations.
51 <     *
52 <     * queue.length must be >= 2, even if size == 0.
94 >     * Priority queue represented as a balanced binary heap: the two
95 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
96 >     * priority queue is ordered by comparator, or by the elements'
97 >     * natural ordering, if comparator is null: For each node n in the
98 >     * heap and each descendant d of n, n <= d.  The element with the
99 >     * lowest value is in queue[0], assuming the queue is nonempty.
100       */
101 <    private E[] queue;
101 >    transient Object[] queue; // non-private to simplify nested class access
102  
103      /**
104       * The number of elements in the priority queue.
105       */
106 <    private int size = 0;
106 >    int size;
107  
108      /**
109       * The comparator, or null if priority queue uses elements'
110       * natural ordering.
111       */
112 <    private final Comparator<E> comparator;
112 >    private final Comparator<? super E> comparator;
113  
114      /**
115       * The number of times this priority queue has been
116       * <i>structurally modified</i>.  See AbstractList for gory details.
117       */
118 <    private int modCount = 0;
118 >    transient int modCount;     // non-private to simplify nested class access
119  
120      /**
121 <     * Create a new priority queue with the default initial capacity (11)
122 <     * that orders its elements according to their natural ordering.
121 >     * Creates a {@code PriorityQueue} with the default initial
122 >     * capacity (11) that orders its elements according to their
123 >     * {@linkplain Comparable natural ordering}.
124       */
125      public PriorityQueue() {
126 <        this(DEFAULT_INITIAL_CAPACITY);
126 >        this(DEFAULT_INITIAL_CAPACITY, null);
127      }
128  
129      /**
130 <     * Create a new priority queue with the specified initial capacity
131 <     * that orders its elements according to their natural ordering.
130 >     * Creates a {@code PriorityQueue} with the specified initial
131 >     * capacity that orders its elements according to their
132 >     * {@linkplain Comparable natural ordering}.
133       *
134 <     * @param initialCapacity the initial capacity for this priority queue.
134 >     * @param initialCapacity the initial capacity for this priority queue
135 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
136 >     *         than 1
137       */
138      public PriorityQueue(int initialCapacity) {
139          this(initialCapacity, null);
140      }
141  
142      /**
143 <     * Create a new priority queue with the specified initial capacity (11)
144 <     * that orders its elements according to the specified comparator.
143 >     * Creates a {@code PriorityQueue} with the default initial capacity and
144 >     * whose elements are ordered according to the specified comparator.
145       *
146 <     * @param initialCapacity the initial capacity for this priority queue.
147 <     * @param comparator the comparator used to order this priority queue.
146 >     * @param  comparator the comparator that will be used to order this
147 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
148 >     *         natural ordering} of the elements will be used.
149 >     * @since 1.8
150       */
151 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
151 >    public PriorityQueue(Comparator<? super E> comparator) {
152 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
153 >    }
154 >
155 >    /**
156 >     * Creates a {@code PriorityQueue} with the specified initial capacity
157 >     * that orders its elements according to the specified comparator.
158 >     *
159 >     * @param  initialCapacity the initial capacity for this priority queue
160 >     * @param  comparator the comparator that will be used to order this
161 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
162 >     *         natural ordering} of the elements will be used.
163 >     * @throws IllegalArgumentException if {@code initialCapacity} is
164 >     *         less than 1
165 >     */
166 >    public PriorityQueue(int initialCapacity,
167 >                         Comparator<? super E> comparator) {
168 >        // Note: This restriction of at least one is not actually needed,
169 >        // but continues for 1.5 compatibility
170          if (initialCapacity < 1)
171 <            initialCapacity = 1;
172 <        queue = new E[initialCapacity + 1];
171 >            throw new IllegalArgumentException();
172 >        this.queue = new Object[initialCapacity];
173          this.comparator = comparator;
174      }
175  
176      /**
177 <     * Create a new priority queue containing the elements in the specified
178 <     * collection.  The priority queue has an initial capacity of 110% of the
179 <     * size of the specified collection. If the specified collection
180 <     * implements the {@link Sorted} interface, the priority queue will be
181 <     * sorted according to the same comparator, or according to its elements'
182 <     * natural order if the collection is sorted according to its elements'
112 <     * natural order.  If the specified collection does not implement the
113 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 <     * its elements' natural order.
177 >     * Creates a {@code PriorityQueue} containing the elements in the
178 >     * specified collection.  If the specified collection is an instance of
179 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
180 >     * priority queue will be ordered according to the same ordering.
181 >     * Otherwise, this priority queue will be ordered according to the
182 >     * {@linkplain Comparable natural ordering} of its elements.
183       *
184 <     * @param initialElements the collection whose elements are to be placed
185 <     *        into this priority queue.
184 >     * @param  c the collection whose elements are to be placed
185 >     *         into this priority queue
186       * @throws ClassCastException if elements of the specified collection
187       *         cannot be compared to one another according to the priority
188 <     *         queue's ordering.
189 <     * @throws NullPointerException if the specified collection or an
190 <     *         element of the specified collection is <tt>null</tt>.
191 <     */
192 <    public PriorityQueue(Collection<E> initialElements) {
193 <        int sz = initialElements.size();
194 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
195 <                                            Integer.MAX_VALUE - 1);
196 <        if (initialCapacity < 1)
197 <            initialCapacity = 1;
198 <        queue = new E[initialCapacity + 1];
188 >     *         queue's ordering
189 >     * @throws NullPointerException if the specified collection or any
190 >     *         of its elements are null
191 >     */
192 >    public PriorityQueue(Collection<? extends E> c) {
193 >        if (c instanceof SortedSet<?>) {
194 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
195 >            this.comparator = (Comparator<? super E>) ss.comparator();
196 >            initElementsFromCollection(ss);
197 >        }
198 >        else if (c instanceof PriorityQueue<?>) {
199 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
200 >            this.comparator = (Comparator<? super E>) pq.comparator();
201 >            initFromPriorityQueue(pq);
202 >        }
203 >        else {
204 >            this.comparator = null;
205 >            initFromCollection(c);
206 >        }
207 >    }
208  
209 <        /* Commented out to compile with generics compiler
209 >    /**
210 >     * Creates a {@code PriorityQueue} containing the elements in the
211 >     * specified priority queue.  This priority queue will be
212 >     * ordered according to the same ordering as the given priority
213 >     * queue.
214 >     *
215 >     * @param  c the priority queue whose elements are to be placed
216 >     *         into this priority queue
217 >     * @throws ClassCastException if elements of {@code c} cannot be
218 >     *         compared to one another according to {@code c}'s
219 >     *         ordering
220 >     * @throws NullPointerException if the specified priority queue or any
221 >     *         of its elements are null
222 >     */
223 >    public PriorityQueue(PriorityQueue<? extends E> c) {
224 >        this.comparator = (Comparator<? super E>) c.comparator();
225 >        initFromPriorityQueue(c);
226 >    }
227  
228 <        if (initialElements instanceof Sorted) {
229 <            comparator = ((Sorted)initialElements).comparator();
230 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
231 <                queue[++size] = i.next();
228 >    /**
229 >     * Creates a {@code PriorityQueue} containing the elements in the
230 >     * specified sorted set.   This priority queue will be ordered
231 >     * according to the same ordering as the given sorted set.
232 >     *
233 >     * @param  c the sorted set whose elements are to be placed
234 >     *         into this priority queue
235 >     * @throws ClassCastException if elements of the specified sorted
236 >     *         set cannot be compared to one another according to the
237 >     *         sorted set's ordering
238 >     * @throws NullPointerException if the specified sorted set or any
239 >     *         of its elements are null
240 >     */
241 >    public PriorityQueue(SortedSet<? extends E> c) {
242 >        this.comparator = (Comparator<? super E>) c.comparator();
243 >        initElementsFromCollection(c);
244 >    }
245 >
246 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
247 >    private static Object[] ensureNonEmpty(Object[] es) {
248 >        return (es.length > 0) ? es : new Object[1];
249 >    }
250 >
251 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
252 >        if (c.getClass() == PriorityQueue.class) {
253 >            this.queue = ensureNonEmpty(c.toArray());
254 >            this.size = c.size();
255          } else {
256 <        */
140 <        {
141 <            comparator = null;
142 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
143 <                add(i.next());
256 >            initFromCollection(c);
257          }
258      }
259  
260 <    // Queue Methods
260 >    private void initElementsFromCollection(Collection<? extends E> c) {
261 >        Object[] es = c.toArray();
262 >        int len = es.length;
263 >        // If c.toArray incorrectly doesn't return Object[], copy it.
264 >        if (es.getClass() != Object[].class)
265 >            es = Arrays.copyOf(es, len, Object[].class);
266 >        if (len == 1 || this.comparator != null)
267 >            for (Object e : es)
268 >                if (e == null)
269 >                    throw new NullPointerException();
270 >        this.queue = ensureNonEmpty(es);
271 >        this.size = len;
272 >    }
273  
274      /**
275 <     * Remove and return the minimal element from this priority queue if
151 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
152 <     * <i>minimal</i> is defined according to this priority queue's order.
275 >     * Initializes queue array with elements from the given Collection.
276       *
277 <     * @return the minimal element from this priority queue if it contains
155 <     *         one or more elements, otherwise <tt>null</tt>.
277 >     * @param c the collection
278       */
279 <    public E poll() {
280 <        if (size == 0)
281 <            return null;
160 <        return remove(1);
279 >    private void initFromCollection(Collection<? extends E> c) {
280 >        initElementsFromCollection(c);
281 >        heapify();
282      }
283  
284      /**
285 <     * Return, but do not remove, the minimal element from the priority queue,
286 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
287 <     * defined according to this priority queue's order.  This method returns
288 <     * the same object reference that would be returned by by the
289 <     * <tt>poll</tt> method.  The two methods differ in that this method
290 <     * does not remove the element from the priority queue.
285 >     * The maximum size of array to allocate.
286 >     * Some VMs reserve some header words in an array.
287 >     * Attempts to allocate larger arrays may result in
288 >     * OutOfMemoryError: Requested array size exceeds VM limit
289 >     */
290 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
291 >
292 >    /**
293 >     * Increases the capacity of the array.
294       *
295 <     * @return the minimal element from this priority queue if it contains
172 <     *         one or more elements, otherwise <tt>null</tt>.
295 >     * @param minCapacity the desired minimum capacity
296       */
297 +    private void grow(int minCapacity) {
298 +        int oldCapacity = queue.length;
299 +        // Double size if small; else grow by 50%
300 +        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
301 +                                         (oldCapacity + 2) :
302 +                                         (oldCapacity >> 1));
303 +        // overflow-conscious code
304 +        if (newCapacity - MAX_ARRAY_SIZE > 0)
305 +            newCapacity = hugeCapacity(minCapacity);
306 +        queue = Arrays.copyOf(queue, newCapacity);
307 +    }
308 +
309 +    private static int hugeCapacity(int minCapacity) {
310 +        if (minCapacity < 0) // overflow
311 +            throw new OutOfMemoryError();
312 +        return (minCapacity > MAX_ARRAY_SIZE) ?
313 +            Integer.MAX_VALUE :
314 +            MAX_ARRAY_SIZE;
315 +    }
316 +
317 +    /**
318 +     * Inserts the specified element into this priority queue.
319 +     *
320 +     * @return {@code true} (as specified by {@link Collection#add})
321 +     * @throws ClassCastException if the specified element cannot be
322 +     *         compared with elements currently in this priority queue
323 +     *         according to the priority queue's ordering
324 +     * @throws NullPointerException if the specified element is null
325 +     */
326 +    public boolean add(E e) {
327 +        return offer(e);
328 +    }
329 +
330 +    /**
331 +     * Inserts the specified element into this priority queue.
332 +     *
333 +     * @return {@code true} (as specified by {@link Queue#offer})
334 +     * @throws ClassCastException if the specified element cannot be
335 +     *         compared with elements currently in this priority queue
336 +     *         according to the priority queue's ordering
337 +     * @throws NullPointerException if the specified element is null
338 +     */
339 +    public boolean offer(E e) {
340 +        if (e == null)
341 +            throw new NullPointerException();
342 +        modCount++;
343 +        int i = size;
344 +        if (i >= queue.length)
345 +            grow(i + 1);
346 +        siftUp(i, e);
347 +        size = i + 1;
348 +        return true;
349 +    }
350 +
351      public E peek() {
352 <        return queue[1];
352 >        return (E) queue[0];
353      }
354  
355 <    // Collection Methods
355 >    private int indexOf(Object o) {
356 >        if (o != null) {
357 >            final Object[] es = queue;
358 >            for (int i = 0, n = size; i < n; i++)
359 >                if (o.equals(es[i]))
360 >                    return i;
361 >        }
362 >        return -1;
363 >    }
364  
365      /**
366 <     * Removes a single instance of the specified element from this priority
367 <     * queue, if it is present.  Returns true if this collection contained the
368 <     * specified element (or equivalently, if this collection changed as a
366 >     * Removes a single instance of the specified element from this queue,
367 >     * if it is present.  More formally, removes an element {@code e} such
368 >     * that {@code o.equals(e)}, if this queue contains one or more such
369 >     * elements.  Returns {@code true} if and only if this queue contained
370 >     * the specified element (or equivalently, if this queue changed as a
371       * result of the call).
372       *
373 <     * @param o element to be removed from this collection, if present.
374 <     * @return <tt>true</tt> if this collection changed as a result of the
188 <     *         call
189 <     * @throws ClassCastException if the specified element cannot be compared
190 <     *            with elements currently in the priority queue according
191 <     *            to the priority queue's ordering.
192 <     * @throws NullPointerException if the specified element is null.
373 >     * @param o element to be removed from this queue, if present
374 >     * @return {@code true} if this queue changed as a result of the call
375       */
376 <    public boolean remove(Object element) {
377 <        if (element == null)
378 <            throw new NullPointerException();
376 >    public boolean remove(Object o) {
377 >        int i = indexOf(o);
378 >        if (i == -1)
379 >            return false;
380 >        else {
381 >            removeAt(i);
382 >            return true;
383 >        }
384 >    }
385  
386 <        if (comparator == null) {
387 <            for (int i = 1; i <= size; i++) {
388 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
389 <                    remove(i);
390 <                    return true;
391 <                }
392 <            }
393 <        } else {
394 <            for (int i = 1; i <= size; i++) {
395 <                if (comparator.compare(queue[i], (E) element) == 0) {
396 <                    remove(i);
209 <                    return true;
210 <                }
386 >    /**
387 >     * Identity-based version for use in Itr.remove.
388 >     *
389 >     * @param o element to be removed from this queue, if present
390 >     */
391 >    void removeEq(Object o) {
392 >        final Object[] es = queue;
393 >        for (int i = 0, n = size; i < n; i++) {
394 >            if (o == es[i]) {
395 >                removeAt(i);
396 >                break;
397              }
398          }
213        return false;
399      }
400  
401      /**
402 <     * Returns an iterator over the elements in this priority queue.  The
403 <     * first element returned by this iterator is the same element that
404 <     * would be returned by a call to <tt>peek</tt>.
402 >     * Returns {@code true} if this queue contains the specified element.
403 >     * More formally, returns {@code true} if and only if this queue contains
404 >     * at least one element {@code e} such that {@code o.equals(e)}.
405 >     *
406 >     * @param o object to be checked for containment in this queue
407 >     * @return {@code true} if this queue contains the specified element
408 >     */
409 >    public boolean contains(Object o) {
410 >        return indexOf(o) >= 0;
411 >    }
412 >
413 >    /**
414 >     * Returns an array containing all of the elements in this queue.
415 >     * The elements are in no particular order.
416 >     *
417 >     * <p>The returned array will be "safe" in that no references to it are
418 >     * maintained by this queue.  (In other words, this method must allocate
419 >     * a new array).  The caller is thus free to modify the returned array.
420 >     *
421 >     * <p>This method acts as bridge between array-based and collection-based
422 >     * APIs.
423 >     *
424 >     * @return an array containing all of the elements in this queue
425 >     */
426 >    public Object[] toArray() {
427 >        return Arrays.copyOf(queue, size);
428 >    }
429 >
430 >    /**
431 >     * Returns an array containing all of the elements in this queue; the
432 >     * runtime type of the returned array is that of the specified array.
433 >     * The returned array elements are in no particular order.
434 >     * If the queue fits in the specified array, it is returned therein.
435 >     * Otherwise, a new array is allocated with the runtime type of the
436 >     * specified array and the size of this queue.
437 >     *
438 >     * <p>If the queue fits in the specified array with room to spare
439 >     * (i.e., the array has more elements than the queue), the element in
440 >     * the array immediately following the end of the collection is set to
441 >     * {@code null}.
442 >     *
443 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
444 >     * array-based and collection-based APIs.  Further, this method allows
445 >     * precise control over the runtime type of the output array, and may,
446 >     * under certain circumstances, be used to save allocation costs.
447 >     *
448 >     * <p>Suppose {@code x} is a queue known to contain only strings.
449 >     * The following code can be used to dump the queue into a newly
450 >     * allocated array of {@code String}:
451 >     *
452 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
453 >     *
454 >     * Note that {@code toArray(new Object[0])} is identical in function to
455 >     * {@code toArray()}.
456 >     *
457 >     * @param a the array into which the elements of the queue are to
458 >     *          be stored, if it is big enough; otherwise, a new array of the
459 >     *          same runtime type is allocated for this purpose.
460 >     * @return an array containing all of the elements in this queue
461 >     * @throws ArrayStoreException if the runtime type of the specified array
462 >     *         is not a supertype of the runtime type of every element in
463 >     *         this queue
464 >     * @throws NullPointerException if the specified array is null
465 >     */
466 >    public <T> T[] toArray(T[] a) {
467 >        final int size = this.size;
468 >        if (a.length < size)
469 >            // Make a new array of a's runtime type, but my contents:
470 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
471 >        System.arraycopy(queue, 0, a, 0, size);
472 >        if (a.length > size)
473 >            a[size] = null;
474 >        return a;
475 >    }
476 >
477 >    /**
478 >     * Returns an iterator over the elements in this queue. The iterator
479 >     * does not return the elements in any particular order.
480       *
481 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
481 >     * @return an iterator over the elements in this queue
482       */
483      public Iterator<E> iterator() {
484          return new Itr();
485      }
486  
487 <    private class Itr implements Iterator<E> {
487 >    private final class Itr implements Iterator<E> {
488          /**
489           * Index (into queue array) of element to be returned by
490           * subsequent call to next.
491           */
492 <        int cursor = 1;
492 >        private int cursor;
493 >
494 >        /**
495 >         * Index of element returned by most recent call to next,
496 >         * unless that element came from the forgetMeNot list.
497 >         * Set to -1 if element is deleted by a call to remove.
498 >         */
499 >        private int lastRet = -1;
500  
501          /**
502 <         * Index of element returned by most recent call to next or
503 <         * previous.  Reset to 0 if this element is deleted by a call
504 <         * to remove.
502 >         * A queue of elements that were moved from the unvisited portion of
503 >         * the heap into the visited portion as a result of "unlucky" element
504 >         * removals during the iteration.  (Unlucky element removals are those
505 >         * that require a siftup instead of a siftdown.)  We must visit all of
506 >         * the elements in this list to complete the iteration.  We do this
507 >         * after we've completed the "normal" iteration.
508 >         *
509 >         * We expect that most iterations, even those involving removals,
510 >         * will not need to store elements in this field.
511           */
512 <        int lastRet = 0;
512 >        private ArrayDeque<E> forgetMeNot;
513 >
514 >        /**
515 >         * Element returned by the most recent call to next iff that
516 >         * element was drawn from the forgetMeNot list.
517 >         */
518 >        private E lastRetElt;
519  
520          /**
521           * The modCount value that the iterator believes that the backing
522 <         * List should have.  If this expectation is violated, the iterator
522 >         * Queue should have.  If this expectation is violated, the iterator
523           * has detected concurrent modification.
524           */
525 <        int expectedModCount = modCount;
525 >        private int expectedModCount = modCount;
526 >
527 >        Itr() {}                        // prevent access constructor creation
528  
529          public boolean hasNext() {
530 <            return cursor <= size;
530 >            return cursor < size ||
531 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
532          }
533  
534          public E next() {
535 <            checkForComodification();
536 <            if (cursor > size)
537 <                throw new NoSuchElementException();
538 <            E result = queue[cursor];
539 <            lastRet = cursor++;
540 <            return result;
535 >            if (expectedModCount != modCount)
536 >                throw new ConcurrentModificationException();
537 >            if (cursor < size)
538 >                return (E) queue[lastRet = cursor++];
539 >            if (forgetMeNot != null) {
540 >                lastRet = -1;
541 >                lastRetElt = forgetMeNot.poll();
542 >                if (lastRetElt != null)
543 >                    return lastRetElt;
544 >            }
545 >            throw new NoSuchElementException();
546          }
547  
548          public void remove() {
549 <            if (lastRet == 0)
549 >            if (expectedModCount != modCount)
550 >                throw new ConcurrentModificationException();
551 >            if (lastRet != -1) {
552 >                E moved = PriorityQueue.this.removeAt(lastRet);
553 >                lastRet = -1;
554 >                if (moved == null)
555 >                    cursor--;
556 >                else {
557 >                    if (forgetMeNot == null)
558 >                        forgetMeNot = new ArrayDeque<>();
559 >                    forgetMeNot.add(moved);
560 >                }
561 >            } else if (lastRetElt != null) {
562 >                PriorityQueue.this.removeEq(lastRetElt);
563 >                lastRetElt = null;
564 >            } else {
565                  throw new IllegalStateException();
566 <            checkForComodification();
265 <
266 <            PriorityQueue.this.remove(lastRet);
267 <            if (lastRet < cursor)
268 <                cursor--;
269 <            lastRet = 0;
566 >            }
567              expectedModCount = modCount;
568          }
569 +    }
570  
571 <        final void checkForComodification() {
572 <            if (modCount != expectedModCount)
573 <                throw new ConcurrentModificationException();
571 >    public int size() {
572 >        return size;
573 >    }
574 >
575 >    /**
576 >     * Removes all of the elements from this priority queue.
577 >     * The queue will be empty after this call returns.
578 >     */
579 >    public void clear() {
580 >        modCount++;
581 >        final Object[] es = queue;
582 >        for (int i = 0, n = size; i < n; i++)
583 >            es[i] = null;
584 >        size = 0;
585 >    }
586 >
587 >    public E poll() {
588 >        final Object[] es;
589 >        final E result;
590 >
591 >        if ((result = (E) ((es = queue)[0])) != null) {
592 >            modCount++;
593 >            final int n;
594 >            final E x = (E) es[(n = --size)];
595 >            es[n] = null;
596 >            if (n > 0) {
597 >                final Comparator<? super E> cmp;
598 >                if ((cmp = comparator) == null)
599 >                    siftDownComparable(0, x, es, n);
600 >                else
601 >                    siftDownUsingComparator(0, x, es, n, cmp);
602 >            }
603          }
604 +        return result;
605      }
606  
607      /**
608 <     * Returns the number of elements in this priority queue.
608 >     * Removes the ith element from queue.
609       *
610 <     * @return the number of elements in this priority queue.
611 <     */
612 <    public int size() {
613 <        return size;
610 >     * Normally this method leaves the elements at up to i-1,
611 >     * inclusive, untouched.  Under these circumstances, it returns
612 >     * null.  Occasionally, in order to maintain the heap invariant,
613 >     * it must swap a later element of the list with one earlier than
614 >     * i.  Under these circumstances, this method returns the element
615 >     * that was previously at the end of the list and is now at some
616 >     * position before i. This fact is used by iterator.remove so as to
617 >     * avoid missing traversing elements.
618 >     */
619 >    E removeAt(int i) {
620 >        // assert i >= 0 && i < size;
621 >        final Object[] es = queue;
622 >        modCount++;
623 >        int s = --size;
624 >        if (s == i) // removed last element
625 >            es[i] = null;
626 >        else {
627 >            E moved = (E) es[s];
628 >            es[s] = null;
629 >            siftDown(i, moved);
630 >            if (es[i] == moved) {
631 >                siftUp(i, moved);
632 >                if (es[i] != moved)
633 >                    return moved;
634 >            }
635 >        }
636 >        return null;
637      }
638  
639      /**
640 <     * Add the specified element to this priority queue.
640 >     * Inserts item x at position k, maintaining heap invariant by
641 >     * promoting x up the tree until it is greater than or equal to
642 >     * its parent, or is the root.
643 >     *
644 >     * To simplify and speed up coercions and comparisons, the
645 >     * Comparable and Comparator versions are separated into different
646 >     * methods that are otherwise identical. (Similarly for siftDown.)
647       *
648 <     * @param element the element to add.
649 <     * @return true
293 <     * @throws ClassCastException if the specified element cannot be compared
294 <     *            with elements currently in the priority queue according
295 <     *            to the priority queue's ordering.
296 <     * @throws NullPointerException if the specified element is null.
648 >     * @param k the position to fill
649 >     * @param x the item to insert
650       */
651 <    public boolean offer(E element) {
652 <        if (element == null)
653 <            throw new NullPointerException();
654 <        modCount++;
651 >    private void siftUp(int k, E x) {
652 >        if (comparator != null)
653 >            siftUpUsingComparator(k, x, queue, comparator);
654 >        else
655 >            siftUpComparable(k, x, queue);
656 >    }
657  
658 <        // Grow backing store if necessary
659 <        if (++size == queue.length) {
660 <            E[] newQueue = new E[2 * queue.length];
661 <            System.arraycopy(queue, 0, newQueue, 0, size);
662 <            queue = newQueue;
658 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
659 >        Comparable<? super T> key = (Comparable<? super T>) x;
660 >        while (k > 0) {
661 >            int parent = (k - 1) >>> 1;
662 >            Object e = es[parent];
663 >            if (key.compareTo((T) e) >= 0)
664 >                break;
665 >            es[k] = e;
666 >            k = parent;
667          }
668 +        es[k] = key;
669 +    }
670  
671 <        queue[size] = element;
672 <        fixUp(size);
673 <        return true;
671 >    private static <T> void siftUpUsingComparator(
672 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
673 >        while (k > 0) {
674 >            int parent = (k - 1) >>> 1;
675 >            Object e = es[parent];
676 >            if (cmp.compare(x, (T) e) >= 0)
677 >                break;
678 >            es[k] = e;
679 >            k = parent;
680 >        }
681 >        es[k] = x;
682      }
683  
684      /**
685 <     * Remove all elements from the priority queue.
685 >     * Inserts item x at position k, maintaining heap invariant by
686 >     * demoting x down the tree repeatedly until it is less than or
687 >     * equal to its children or is a leaf.
688 >     *
689 >     * @param k the position to fill
690 >     * @param x the item to insert
691 >     */
692 >    private void siftDown(int k, E x) {
693 >        if (comparator != null)
694 >            siftDownUsingComparator(k, x, queue, size, comparator);
695 >        else
696 >            siftDownComparable(k, x, queue, size);
697 >    }
698 >
699 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
700 >        // assert n > 0;
701 >        Comparable<? super T> key = (Comparable<? super T>)x;
702 >        int half = n >>> 1;           // loop while a non-leaf
703 >        while (k < half) {
704 >            int child = (k << 1) + 1; // assume left child is least
705 >            Object c = es[child];
706 >            int right = child + 1;
707 >            if (right < n &&
708 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
709 >                c = es[child = right];
710 >            if (key.compareTo((T) c) <= 0)
711 >                break;
712 >            es[k] = c;
713 >            k = child;
714 >        }
715 >        es[k] = key;
716 >    }
717 >
718 >    private static <T> void siftDownUsingComparator(
719 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
720 >        // assert n > 0;
721 >        int half = n >>> 1;
722 >        while (k < half) {
723 >            int child = (k << 1) + 1;
724 >            Object c = es[child];
725 >            int right = child + 1;
726 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
727 >                c = es[child = right];
728 >            if (cmp.compare(x, (T) c) <= 0)
729 >                break;
730 >            es[k] = c;
731 >            k = child;
732 >        }
733 >        es[k] = x;
734 >    }
735 >
736 >    /**
737 >     * Establishes the heap invariant (described above) in the entire tree,
738 >     * assuming nothing about the order of the elements prior to the call.
739 >     * This classic algorithm due to Floyd (1964) is known to be O(size).
740       */
741 <    public void clear() {
742 <        modCount++;
741 >    private void heapify() {
742 >        final Object[] es = queue;
743 >        int n = size, i = (n >>> 1) - 1;
744 >        final Comparator<? super E> cmp;
745 >        if ((cmp = comparator) == null)
746 >            for (; i >= 0; i--)
747 >                siftDownComparable(i, (E) es[i], es, n);
748 >        else
749 >            for (; i >= 0; i--)
750 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
751 >    }
752  
753 <        // Null out element references to prevent memory leak
754 <        for (int i=1; i<=size; i++)
755 <            queue[i] = null;
753 >    /**
754 >     * Returns the comparator used to order the elements in this
755 >     * queue, or {@code null} if this queue is sorted according to
756 >     * the {@linkplain Comparable natural ordering} of its elements.
757 >     *
758 >     * @return the comparator used to order this queue, or
759 >     *         {@code null} if this queue is sorted according to the
760 >     *         natural ordering of its elements
761 >     */
762 >    public Comparator<? super E> comparator() {
763 >        return comparator;
764 >    }
765  
766 <        size = 0;
766 >    /**
767 >     * Saves this queue to a stream (that is, serializes it).
768 >     *
769 >     * @param s the stream
770 >     * @throws java.io.IOException if an I/O error occurs
771 >     * @serialData The length of the array backing the instance is
772 >     *             emitted (int), followed by all of its elements
773 >     *             (each an {@code Object}) in the proper order.
774 >     */
775 >    private void writeObject(java.io.ObjectOutputStream s)
776 >        throws java.io.IOException {
777 >        // Write out element count, and any hidden stuff
778 >        s.defaultWriteObject();
779 >
780 >        // Write out array length, for compatibility with 1.5 version
781 >        s.writeInt(Math.max(2, size + 1));
782 >
783 >        // Write out all elements in the "proper order".
784 >        final Object[] es = queue;
785 >        for (int i = 0, n = size; i < n; i++)
786 >            s.writeObject(es[i]);
787      }
788  
789      /**
790 <     * Removes and returns the ith element from queue.  Recall
791 <     * that queue is one-based, so 1 <= i <= size.
790 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
791 >     * (that is, deserializes it).
792       *
793 <     * XXX: Could further special-case i==size, but is it worth it?
794 <     * XXX: Could special-case i==0, but is it worth it?
793 >     * @param s the stream
794 >     * @throws ClassNotFoundException if the class of a serialized object
795 >     *         could not be found
796 >     * @throws java.io.IOException if an I/O error occurs
797       */
798 <    private E remove(int i) {
799 <        assert i <= size;
800 <        modCount++;
798 >    private void readObject(java.io.ObjectInputStream s)
799 >        throws java.io.IOException, ClassNotFoundException {
800 >        // Read in size, and any hidden stuff
801 >        s.defaultReadObject();
802  
803 <        E result = queue[i];
804 <        queue[i] = queue[size];
805 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
806 <        if (i <= size)
807 <            fixDown(i);
808 <        return result;
803 >        // Read in (and discard) array length
804 >        s.readInt();
805 >
806 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
807 >        final Object[] es = queue = new Object[Math.max(size, 1)];
808 >
809 >        // Read in all elements.
810 >        for (int i = 0, n = size; i < n; i++)
811 >            es[i] = s.readObject();
812 >
813 >        // Elements are guaranteed to be in "proper order", but the
814 >        // spec has never explained what that might be.
815 >        heapify();
816      }
817  
818      /**
819 <     * Establishes the heap invariant (described above) assuming the heap
820 <     * satisfies the invariant except possibly for the leaf-node indexed by k
821 <     * (which may have a nextExecutionTime less than its parent's).
822 <     *
823 <     * This method functions by "promoting" queue[k] up the hierarchy
824 <     * (by swapping it with its parent) repeatedly until queue[k]
825 <     * is greater than or equal to its parent.
826 <     */
827 <    private void fixUp(int k) {
828 <        if (comparator == null) {
829 <            while (k > 1) {
830 <                int j = k >> 1;
831 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
832 <                    break;
833 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
834 <                k = j;
819 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
820 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
821 >     * queue. The spliterator does not traverse elements in any particular order
822 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
823 >     *
824 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
825 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
826 >     * Overriding implementations should document the reporting of additional
827 >     * characteristic values.
828 >     *
829 >     * @return a {@code Spliterator} over the elements in this queue
830 >     * @since 1.8
831 >     */
832 >    public final Spliterator<E> spliterator() {
833 >        return new PriorityQueueSpliterator(0, -1, 0);
834 >    }
835 >
836 >    final class PriorityQueueSpliterator implements Spliterator<E> {
837 >        private int index;            // current index, modified on advance/split
838 >        private int fence;            // -1 until first use
839 >        private int expectedModCount; // initialized when fence set
840 >
841 >        /** Creates new spliterator covering the given range. */
842 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
843 >            this.index = origin;
844 >            this.fence = fence;
845 >            this.expectedModCount = expectedModCount;
846 >        }
847 >
848 >        private int getFence() { // initialize fence to size on first use
849 >            int hi;
850 >            if ((hi = fence) < 0) {
851 >                expectedModCount = modCount;
852 >                hi = fence = size;
853              }
854 <        } else {
855 <            while (k > 1) {
856 <                int j = k >> 1;
857 <                if (comparator.compare(queue[j], queue[k]) <= 0)
858 <                    break;
859 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
860 <                k = j;
854 >            return hi;
855 >        }
856 >
857 >        public PriorityQueueSpliterator trySplit() {
858 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
859 >            return (lo >= mid) ? null :
860 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
861 >        }
862 >
863 >        public void forEachRemaining(Consumer<? super E> action) {
864 >            if (action == null)
865 >                throw new NullPointerException();
866 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
867 >            final Object[] es = queue;
868 >            int i, hi; E e;
869 >            for (i = index, index = hi = fence; i < hi; i++) {
870 >                if ((e = (E) es[i]) == null)
871 >                    break;      // must be CME
872 >                action.accept(e);
873 >            }
874 >            if (modCount != expectedModCount)
875 >                throw new ConcurrentModificationException();
876 >        }
877 >
878 >        public boolean tryAdvance(Consumer<? super E> action) {
879 >            if (action == null)
880 >                throw new NullPointerException();
881 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
882 >            int i;
883 >            if ((i = index) < fence) {
884 >                index = i + 1;
885 >                E e;
886 >                if ((e = (E) queue[i]) == null
887 >                    || modCount != expectedModCount)
888 >                    throw new ConcurrentModificationException();
889 >                action.accept(e);
890 >                return true;
891              }
892 +            return false;
893 +        }
894 +
895 +        public long estimateSize() {
896 +            return getFence() - index;
897 +        }
898 +
899 +        public int characteristics() {
900 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
901          }
902      }
903  
904      /**
905 <     * Establishes the heap invariant (described above) in the subtree
906 <     * rooted at k, which is assumed to satisfy the heap invariant except
907 <     * possibly for node k itself (which may be greater than its children).
908 <     *
909 <     * This method functions by "demoting" queue[k] down the hierarchy
910 <     * (by swapping it with its smaller child) repeatedly until queue[k]
911 <     * is less than or equal to its children.
912 <     */
913 <    private void fixDown(int k) {
914 <        int j;
915 <        if (comparator == null) {
916 <            while ((j = k << 1) <= size) {
917 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
918 <                    j++; // j indexes smallest kid
919 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
920 <                    break;
921 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
922 <                k = j;
923 <            }
924 <        } else {
925 <            while ((j = k << 1) <= size) {
926 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
927 <                    j++; // j indexes smallest kid
928 <                if (comparator.compare(queue[k], queue[j]) <= 0)
929 <                    break;
930 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
931 <                k = j;
932 <            }
905 >     * @throws NullPointerException {@inheritDoc}
906 >     */
907 >    public boolean removeIf(Predicate<? super E> filter) {
908 >        Objects.requireNonNull(filter);
909 >        return bulkRemove(filter);
910 >    }
911 >
912 >    /**
913 >     * @throws NullPointerException {@inheritDoc}
914 >     */
915 >    public boolean removeAll(Collection<?> c) {
916 >        Objects.requireNonNull(c);
917 >        return bulkRemove(e -> c.contains(e));
918 >    }
919 >
920 >    /**
921 >     * @throws NullPointerException {@inheritDoc}
922 >     */
923 >    public boolean retainAll(Collection<?> c) {
924 >        Objects.requireNonNull(c);
925 >        return bulkRemove(e -> !c.contains(e));
926 >    }
927 >
928 >    // A tiny bit set implementation
929 >
930 >    private static long[] nBits(int n) {
931 >        return new long[((n - 1) >> 6) + 1];
932 >    }
933 >    private static void setBit(long[] bits, int i) {
934 >        bits[i >> 6] |= 1L << i;
935 >    }
936 >    private static boolean isClear(long[] bits, int i) {
937 >        return (bits[i >> 6] & (1L << i)) == 0;
938 >    }
939 >
940 >    /** Implementation of bulk remove methods. */
941 >    private boolean bulkRemove(Predicate<? super E> filter) {
942 >        final int expectedModCount = ++modCount;
943 >        final Object[] es = queue;
944 >        final int end = size;
945 >        int i;
946 >        // Optimize for initial run of survivors
947 >        for (i = 0; i < end && !filter.test((E) es[i]); i++)
948 >            ;
949 >        if (i >= end) {
950 >            if (modCount != expectedModCount)
951 >                throw new ConcurrentModificationException();
952 >            return false;
953          }
954 +        // Tolerate predicates that reentrantly access the collection for
955 +        // read (but writers still get CME), so traverse once to find
956 +        // elements to delete, a second pass to physically expunge.
957 +        final int beg = i;
958 +        final long[] deathRow = nBits(end - beg);
959 +        deathRow[0] = 1L;   // set bit 0
960 +        for (i = beg + 1; i < end; i++)
961 +            if (filter.test((E) es[i]))
962 +                setBit(deathRow, i - beg);
963 +        if (modCount != expectedModCount)
964 +            throw new ConcurrentModificationException();
965 +        int w = beg;
966 +        for (i = beg; i < end; i++)
967 +            if (isClear(deathRow, i - beg))
968 +                es[w++] = es[i];
969 +        for (i = size = w; i < end; i++)
970 +            es[i] = null;
971 +        heapify();
972 +        return true;
973      }
974  
975      /**
976 <     * Returns the comparator associated with this priority queue, or
410 <     * <tt>null</tt> if it uses its elements' natural ordering.
411 <     *
412 <     * @return the comparator associated with this priority queue, or
413 <     *         <tt>null</tt> if it uses its elements' natural ordering.
976 >     * @throws NullPointerException {@inheritDoc}
977       */
978 <    Comparator<E> comparator() {
979 <        return comparator;
978 >    public void forEach(Consumer<? super E> action) {
979 >        Objects.requireNonNull(action);
980 >        final int expectedModCount = modCount;
981 >        final Object[] es = queue;
982 >        for (int i = 0, n = size; i < n; i++)
983 >            action.accept((E) es[i]);
984 >        if (expectedModCount != modCount)
985 >            throw new ConcurrentModificationException();
986      }
987   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines