ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.59 by jsr166, Tue Nov 29 08:52:26 2005 UTC vs.
Revision 1.131 by jsr166, Wed May 22 17:36:58 2019 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31 > import jdk.internal.util.ArraysSupport;
32  
33   /**
34 < * An unbounded priority {@linkplain Queue queue} based on a priority
35 < * heap.  The elements of the priority queue are ordered according to
36 < * their {@linkplain Comparable natural ordering}, or by a {@link
37 < * Comparator} provided at queue construction time, depending on which
38 < * constructor is used.  A priority queue does not permit
39 < * <tt>null</tt> elements.  A priority queue relying on natural
40 < * ordering also does not permit insertion of non-comparable objects
41 < * (doing so may result in <tt>ClassCastException</tt>).
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42   *
43   * <p>The <em>head</em> of this queue is the <em>least</em> element
44   * with respect to the specified ordering.  If multiple elements are
45   * tied for least value, the head is one of those elements -- ties are
46 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
47 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48   * element at the head of the queue.
49   *
50   * <p>A priority queue is unbounded, but has an internal
# Line 35 | Line 57 | import java.util.*; // for javadoc (till
57   * <p>This class and its iterator implement all of the
58   * <em>optional</em> methods of the {@link Collection} and {@link
59   * Iterator} interfaces.  The Iterator provided in method {@link
60 < * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62   * the priority queue in any particular order. If you need ordered
63 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64   *
65 < * <p> <strong>Note that this implementation is not synchronized.</strong>
66 < * Multiple threads should not access a <tt>PriorityQueue</tt>
67 < * instance concurrently if any of the threads modifies the list
68 < * structurally. Instead, use the thread-safe {@link
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69   * java.util.concurrent.PriorityBlockingQueue} class.
70   *
71 < * <p>Implementation note: this implementation provides O(log(n)) time
72 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
73 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
74 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
75 < * constant time for the retrieval methods (<tt>peek</tt>,
76 < * <tt>element</tt>, and <tt>size</tt>).
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../guide/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81 + *
82   * @since 1.5
83 < * @version 1.8, 08/27/05
84 < * @author Josh Bloch
61 < * @param <E> the type of elements held in this collection
83 > * @author Josh Bloch, Doug Lea
84 > * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88      implements java.io.Serializable {
89  
# Line 75 | Line 99 | public class PriorityQueue<E> extends Ab
99       * heap and each descendant d of n, n <= d.  The element with the
100       * lowest value is in queue[0], assuming the queue is nonempty.
101       */
102 <    private transient Object[] queue;
102 >    transient Object[] queue; // non-private to simplify nested class access
103  
104      /**
105       * The number of elements in the priority queue.
106       */
107 <    private int size = 0;
107 >    int size;
108  
109      /**
110       * The comparator, or null if priority queue uses elements'
# Line 92 | Line 116 | public class PriorityQueue<E> extends Ab
116       * The number of times this priority queue has been
117       * <i>structurally modified</i>.  See AbstractList for gory details.
118       */
119 <    private transient int modCount = 0;
119 >    transient int modCount;     // non-private to simplify nested class access
120  
121      /**
122 <     * Creates a <tt>PriorityQueue</tt> with the default initial
122 >     * Creates a {@code PriorityQueue} with the default initial
123       * capacity (11) that orders its elements according to their
124       * {@linkplain Comparable natural ordering}.
125       */
# Line 104 | Line 128 | public class PriorityQueue<E> extends Ab
128      }
129  
130      /**
131 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
131 >     * Creates a {@code PriorityQueue} with the specified initial
132       * capacity that orders its elements according to their
133       * {@linkplain Comparable natural ordering}.
134       *
135       * @param initialCapacity the initial capacity for this priority queue
136 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
137 <     * than 1
136 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
137 >     *         than 1
138       */
139      public PriorityQueue(int initialCapacity) {
140          this(initialCapacity, null);
141      }
142  
143      /**
144 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
144 >     * Creates a {@code PriorityQueue} with the default initial capacity and
145 >     * whose elements are ordered according to the specified comparator.
146 >     *
147 >     * @param  comparator the comparator that will be used to order this
148 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
149 >     *         natural ordering} of the elements will be used.
150 >     * @since 1.8
151 >     */
152 >    public PriorityQueue(Comparator<? super E> comparator) {
153 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
154 >    }
155 >
156 >    /**
157 >     * Creates a {@code PriorityQueue} with the specified initial capacity
158       * that orders its elements according to the specified comparator.
159       *
160       * @param  initialCapacity the initial capacity for this priority queue
161 <     * @param  comparator the comparator that will be used to order
162 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
163 <     *         ordering</i> of the elements will be used.
164 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
161 >     * @param  comparator the comparator that will be used to order this
162 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
163 >     *         natural ordering} of the elements will be used.
164 >     * @throws IllegalArgumentException if {@code initialCapacity} is
165       *         less than 1
166       */
167      public PriorityQueue(int initialCapacity,
# Line 138 | Line 175 | public class PriorityQueue<E> extends Ab
175      }
176  
177      /**
178 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
179 <     * specified collection.   If the specified collection is an
180 <     * instance of a {@link java.util.SortedSet} or is another
181 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
182 <     * according to the same ordering.  Otherwise, this priority queue
183 <     * will be ordered according to the natural ordering of its elements.
178 >     * Creates a {@code PriorityQueue} containing the elements in the
179 >     * specified collection.  If the specified collection is an instance of
180 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
181 >     * priority queue will be ordered according to the same ordering.
182 >     * Otherwise, this priority queue will be ordered according to the
183 >     * {@linkplain Comparable natural ordering} of its elements.
184       *
185       * @param  c the collection whose elements are to be placed
186       *         into this priority queue
# Line 154 | Line 191 | public class PriorityQueue<E> extends Ab
191       *         of its elements are null
192       */
193      public PriorityQueue(Collection<? extends E> c) {
194 <        initFromCollection(c);
195 <        if (c instanceof SortedSet)
196 <            comparator = (Comparator<? super E>)
197 <                ((SortedSet<? extends E>)c).comparator();
198 <        else if (c instanceof PriorityQueue)
199 <            comparator = (Comparator<? super E>)
200 <                ((PriorityQueue<? extends E>)c).comparator();
194 >        if (c instanceof SortedSet<?>) {
195 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
196 >            this.comparator = (Comparator<? super E>) ss.comparator();
197 >            initElementsFromCollection(ss);
198 >        }
199 >        else if (c instanceof PriorityQueue<?>) {
200 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
201 >            this.comparator = (Comparator<? super E>) pq.comparator();
202 >            initFromPriorityQueue(pq);
203 >        }
204          else {
205 <            comparator = null;
206 <            heapify();
205 >            this.comparator = null;
206 >            initFromCollection(c);
207          }
208      }
209  
210      /**
211 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
211 >     * Creates a {@code PriorityQueue} containing the elements in the
212       * specified priority queue.  This priority queue will be
213       * ordered according to the same ordering as the given priority
214       * queue.
215       *
216       * @param  c the priority queue whose elements are to be placed
217       *         into this priority queue
218 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
219 <     *         compared to one another according to <tt>c</tt>'s
218 >     * @throws ClassCastException if elements of {@code c} cannot be
219 >     *         compared to one another according to {@code c}'s
220       *         ordering
221       * @throws NullPointerException if the specified priority queue or any
222       *         of its elements are null
223       */
224      public PriorityQueue(PriorityQueue<? extends E> c) {
225 <        comparator = (Comparator<? super E>)c.comparator();
226 <        initFromCollection(c);
225 >        this.comparator = (Comparator<? super E>) c.comparator();
226 >        initFromPriorityQueue(c);
227      }
228  
229      /**
230 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
231 <     * specified sorted set.  This priority queue will be ordered
230 >     * Creates a {@code PriorityQueue} containing the elements in the
231 >     * specified sorted set.   This priority queue will be ordered
232       * according to the same ordering as the given sorted set.
233       *
234       * @param  c the sorted set whose elements are to be placed
235 <     *         into this priority queue.
235 >     *         into this priority queue
236       * @throws ClassCastException if elements of the specified sorted
237       *         set cannot be compared to one another according to the
238       *         sorted set's ordering
# Line 200 | Line 240 | public class PriorityQueue<E> extends Ab
240       *         of its elements are null
241       */
242      public PriorityQueue(SortedSet<? extends E> c) {
243 <        comparator = (Comparator<? super E>)c.comparator();
244 <        initFromCollection(c);
243 >        this.comparator = (Comparator<? super E>) c.comparator();
244 >        initElementsFromCollection(c);
245 >    }
246 >
247 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
248 >    private static Object[] ensureNonEmpty(Object[] es) {
249 >        return (es.length > 0) ? es : new Object[1];
250 >    }
251 >
252 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
253 >        if (c.getClass() == PriorityQueue.class) {
254 >            this.queue = ensureNonEmpty(c.toArray());
255 >            this.size = c.size();
256 >        } else {
257 >            initFromCollection(c);
258 >        }
259 >    }
260 >
261 >    private void initElementsFromCollection(Collection<? extends E> c) {
262 >        Object[] es = c.toArray();
263 >        int len = es.length;
264 >        // If c.toArray incorrectly doesn't return Object[], copy it.
265 >        if (es.getClass() != Object[].class)
266 >            es = Arrays.copyOf(es, len, Object[].class);
267 >        if (len == 1 || this.comparator != null)
268 >            for (Object e : es)
269 >                if (e == null)
270 >                    throw new NullPointerException();
271 >        this.queue = ensureNonEmpty(es);
272 >        this.size = len;
273      }
274  
275      /**
276 <     * Initialize queue array with elements from the given Collection.
276 >     * Initializes queue array with elements from the given Collection.
277 >     *
278       * @param c the collection
279       */
280      private void initFromCollection(Collection<? extends E> c) {
281 <        Object[] a = c.toArray();
282 <        // If c.toArray incorrectly doesn't return Object[], copy it.
214 <        if (a.getClass() != Object[].class)
215 <            a = Arrays.copyOf(a, a.length, Object[].class);
216 <        queue = a;
217 <        size = a.length;
281 >        initElementsFromCollection(c);
282 >        heapify();
283      }
284  
285      /**
# Line 223 | Line 288 | public class PriorityQueue<E> extends Ab
288       * @param minCapacity the desired minimum capacity
289       */
290      private void grow(int minCapacity) {
291 <        if (minCapacity < 0) // overflow
227 <            throw new OutOfMemoryError();
228 <        int oldCapacity = queue.length;
291 >        int oldCapacity = queue.length;
292          // Double size if small; else grow by 50%
293 <        int newCapacity = ((oldCapacity < 64)?
294 <                           ((oldCapacity + 1) * 2):
295 <                           ((oldCapacity / 2) * 3));
296 <        if (newCapacity < 0) // overflow
234 <            newCapacity = Integer.MAX_VALUE;
235 <        if (newCapacity < minCapacity)
236 <            newCapacity = minCapacity;
293 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
294 >                minCapacity - oldCapacity, /* minimum growth */
295 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
296 >                                           /* preferred growth */);
297          queue = Arrays.copyOf(queue, newCapacity);
298      }
299  
300      /**
301       * Inserts the specified element into this priority queue.
302       *
303 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
303 >     * @return {@code true} (as specified by {@link Collection#add})
304       * @throws ClassCastException if the specified element cannot be
305       *         compared with elements currently in this priority queue
306       *         according to the priority queue's ordering
# Line 253 | Line 313 | public class PriorityQueue<E> extends Ab
313      /**
314       * Inserts the specified element into this priority queue.
315       *
316 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
316 >     * @return {@code true} (as specified by {@link Queue#offer})
317       * @throws ClassCastException if the specified element cannot be
318       *         compared with elements currently in this priority queue
319       *         according to the priority queue's ordering
# Line 266 | Line 326 | public class PriorityQueue<E> extends Ab
326          int i = size;
327          if (i >= queue.length)
328              grow(i + 1);
329 +        siftUp(i, e);
330          size = i + 1;
270        if (i == 0)
271            queue[0] = e;
272        else
273            siftUp(i, e);
331          return true;
332      }
333  
334      public E peek() {
278        if (size == 0)
279            return null;
335          return (E) queue[0];
336      }
337  
338      private int indexOf(Object o) {
339 <        if (o != null) {
340 <            for (int i = 0; i < size; i++)
341 <                if (o.equals(queue[i]))
339 >        if (o != null) {
340 >            final Object[] es = queue;
341 >            for (int i = 0, n = size; i < n; i++)
342 >                if (o.equals(es[i]))
343                      return i;
344          }
345          return -1;
# Line 291 | Line 347 | public class PriorityQueue<E> extends Ab
347  
348      /**
349       * Removes a single instance of the specified element from this queue,
350 <     * if it is present.  More formally, removes an element <tt>e</tt> such
351 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
352 <     * elements.  Returns true if this queue contained the specified element
353 <     * (or equivalently, if this queue changed as a result of the call).
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354 >     * result of the call).
355       *
356       * @param o element to be removed from this queue, if present
357 <     * @return <tt>true</tt> if this queue changed as a result of the call
357 >     * @return {@code true} if this queue changed as a result of the call
358       */
359      public boolean remove(Object o) {
360 <        int i = indexOf(o);
361 <        if (i == -1)
362 <            return false;
363 <        else {
364 <            removeAt(i);
365 <            return true;
366 <        }
360 >        int i = indexOf(o);
361 >        if (i == -1)
362 >            return false;
363 >        else {
364 >            removeAt(i);
365 >            return true;
366 >        }
367      }
368  
369      /**
370 <     * Version of remove using reference equality, not equals.
314 <     * Needed by iterator.remove.
370 >     * Identity-based version for use in Itr.remove.
371       *
372       * @param o element to be removed from this queue, if present
317     * @return <tt>true</tt> if removed
373       */
374 <    boolean removeEq(Object o) {
375 <        for (int i = 0; i < size; i++) {
376 <            if (o == queue[i]) {
374 >    void removeEq(Object o) {
375 >        final Object[] es = queue;
376 >        for (int i = 0, n = size; i < n; i++) {
377 >            if (o == es[i]) {
378                  removeAt(i);
379 <                return true;
379 >                break;
380              }
381          }
326        return false;
382      }
383  
384      /**
385 <     * Returns <tt>true</tt> if this queue contains the specified element.
386 <     * More formally, returns <tt>true</tt> if and only if this queue contains
387 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
385 >     * Returns {@code true} if this queue contains the specified element.
386 >     * More formally, returns {@code true} if and only if this queue contains
387 >     * at least one element {@code e} such that {@code o.equals(e)}.
388       *
389       * @param o object to be checked for containment in this queue
390 <     * @return <tt>true</tt> if this queue contains the specified element
390 >     * @return {@code true} if this queue contains the specified element
391       */
392      public boolean contains(Object o) {
393 <        return indexOf(o) != -1;
393 >        return indexOf(o) >= 0;
394      }
395  
396      /**
397 <     * Returns an array containing all of the elements in this queue,
397 >     * Returns an array containing all of the elements in this queue.
398       * The elements are in no particular order.
399       *
400       * <p>The returned array will be "safe" in that no references to it are
401 <     * maintained by this list.  (In other words, this method must allocate
401 >     * maintained by this queue.  (In other words, this method must allocate
402       * a new array).  The caller is thus free to modify the returned array.
403       *
404 +     * <p>This method acts as bridge between array-based and collection-based
405 +     * APIs.
406 +     *
407       * @return an array containing all of the elements in this queue
408       */
409      public Object[] toArray() {
# Line 353 | Line 411 | public class PriorityQueue<E> extends Ab
411      }
412  
413      /**
414 <     * Returns an array containing all of the elements in this queue.
415 <     * The elements are in no particular order.  The runtime type of
416 <     * the returned array is that of the specified array.  If the queue
417 <     * fits in the specified array, it is returned therein.
418 <     * Otherwise, a new array is allocated with the runtime type of
419 <     * the specified array and the size of this queue.
414 >     * Returns an array containing all of the elements in this queue; the
415 >     * runtime type of the returned array is that of the specified array.
416 >     * The returned array elements are in no particular order.
417 >     * If the queue fits in the specified array, it is returned therein.
418 >     * Otherwise, a new array is allocated with the runtime type of the
419 >     * specified array and the size of this queue.
420       *
421       * <p>If the queue fits in the specified array with room to spare
422       * (i.e., the array has more elements than the queue), the element in
423       * the array immediately following the end of the collection is set to
424 <     * <tt>null</tt>.  (This is useful in determining the length of the
425 <     * queue <i>only</i> if the caller knows that the queue does not contain
426 <     * any null elements.)
424 >     * {@code null}.
425 >     *
426 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
427 >     * array-based and collection-based APIs.  Further, this method allows
428 >     * precise control over the runtime type of the output array, and may,
429 >     * under certain circumstances, be used to save allocation costs.
430 >     *
431 >     * <p>Suppose {@code x} is a queue known to contain only strings.
432 >     * The following code can be used to dump the queue into a newly
433 >     * allocated array of {@code String}:
434 >     *
435 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436 >     *
437 >     * Note that {@code toArray(new Object[0])} is identical in function to
438 >     * {@code toArray()}.
439       *
440       * @param a the array into which the elements of the queue are to
441       *          be stored, if it is big enough; otherwise, a new array of the
442       *          same runtime type is allocated for this purpose.
443 <     * @return an array containing the elements of the queue
443 >     * @return an array containing all of the elements in this queue
444       * @throws ArrayStoreException if the runtime type of the specified array
445       *         is not a supertype of the runtime type of every element in
446       *         this queue
447       * @throws NullPointerException if the specified array is null
448       */
449      public <T> T[] toArray(T[] a) {
450 +        final int size = this.size;
451          if (a.length < size)
452              // Make a new array of a's runtime type, but my contents:
453              return (T[]) Arrays.copyOf(queue, size, a.getClass());
454 <        System.arraycopy(queue, 0, a, 0, size);
454 >        System.arraycopy(queue, 0, a, 0, size);
455          if (a.length > size)
456              a[size] = null;
457          return a;
# Line 401 | Line 472 | public class PriorityQueue<E> extends Ab
472           * Index (into queue array) of element to be returned by
473           * subsequent call to next.
474           */
475 <        private int cursor = 0;
475 >        private int cursor;
476  
477          /**
478           * Index of element returned by most recent call to next,
# Line 419 | Line 490 | public class PriorityQueue<E> extends Ab
490           * after we've completed the "normal" iteration.
491           *
492           * We expect that most iterations, even those involving removals,
493 <         * will not use need to store elements in this field.
493 >         * will not need to store elements in this field.
494           */
495 <        private ArrayDeque<E> forgetMeNot = null;
495 >        private ArrayDeque<E> forgetMeNot;
496  
497          /**
498           * Element returned by the most recent call to next iff that
499           * element was drawn from the forgetMeNot list.
500           */
501 <        private E lastRetElt = null;
501 >        private E lastRetElt;
502  
503          /**
504           * The modCount value that the iterator believes that the backing
505 <         * List should have.  If this expectation is violated, the iterator
505 >         * Queue should have.  If this expectation is violated, the iterator
506           * has detected concurrent modification.
507           */
508          private int expectedModCount = modCount;
509  
510 +        Itr() {}                        // prevent access constructor creation
511 +
512          public boolean hasNext() {
513              return cursor < size ||
514                  (forgetMeNot != null && !forgetMeNot.isEmpty());
# Line 458 | Line 531 | public class PriorityQueue<E> extends Ab
531          public void remove() {
532              if (expectedModCount != modCount)
533                  throw new ConcurrentModificationException();
461            if (lastRet == -1 && lastRetElt == null)
462                throw new IllegalStateException();
534              if (lastRet != -1) {
535                  E moved = PriorityQueue.this.removeAt(lastRet);
536                  lastRet = -1;
# Line 467 | Line 538 | public class PriorityQueue<E> extends Ab
538                      cursor--;
539                  else {
540                      if (forgetMeNot == null)
541 <                        forgetMeNot = new ArrayDeque<E>();
541 >                        forgetMeNot = new ArrayDeque<>();
542                      forgetMeNot.add(moved);
543                  }
544 <            } else {
544 >            } else if (lastRetElt != null) {
545                  PriorityQueue.this.removeEq(lastRetElt);
546                  lastRetElt = null;
547 +            } else {
548 +                throw new IllegalStateException();
549              }
550              expectedModCount = modCount;
551          }
479
552      }
553  
554      public int size() {
# Line 489 | Line 561 | public class PriorityQueue<E> extends Ab
561       */
562      public void clear() {
563          modCount++;
564 <        for (int i = 0; i < size; i++)
565 <            queue[i] = null;
564 >        final Object[] es = queue;
565 >        for (int i = 0, n = size; i < n; i++)
566 >            es[i] = null;
567          size = 0;
568      }
569  
570      public E poll() {
571 <        if (size == 0)
572 <            return null;
573 <        int s = --size;
574 <        modCount++;
575 <        E result = (E)queue[0];
576 <        E x = (E)queue[s];
577 <        queue[s] = null;
578 <        if (s != 0)
579 <            siftDown(0, x);
571 >        final Object[] es;
572 >        final E result;
573 >
574 >        if ((result = (E) ((es = queue)[0])) != null) {
575 >            modCount++;
576 >            final int n;
577 >            final E x = (E) es[(n = --size)];
578 >            es[n] = null;
579 >            if (n > 0) {
580 >                final Comparator<? super E> cmp;
581 >                if ((cmp = comparator) == null)
582 >                    siftDownComparable(0, x, es, n);
583 >                else
584 >                    siftDownUsingComparator(0, x, es, n, cmp);
585 >            }
586 >        }
587          return result;
588      }
589  
# Line 517 | Line 597 | public class PriorityQueue<E> extends Ab
597       * i.  Under these circumstances, this method returns the element
598       * that was previously at the end of the list and is now at some
599       * position before i. This fact is used by iterator.remove so as to
600 <     * avoid missing traverseing elements.
600 >     * avoid missing traversing elements.
601       */
602 <    private E removeAt(int i) {
603 <        assert i >= 0 && i < size;
602 >    E removeAt(int i) {
603 >        // assert i >= 0 && i < size;
604 >        final Object[] es = queue;
605          modCount++;
606          int s = --size;
607          if (s == i) // removed last element
608 <            queue[i] = null;
608 >            es[i] = null;
609          else {
610 <            E moved = (E) queue[s];
611 <            queue[s] = null;
610 >            E moved = (E) es[s];
611 >            es[s] = null;
612              siftDown(i, moved);
613 <            if (queue[i] == moved) {
613 >            if (es[i] == moved) {
614                  siftUp(i, moved);
615 <                if (queue[i] != moved)
615 >                if (es[i] != moved)
616                      return moved;
617              }
618          }
# Line 543 | Line 624 | public class PriorityQueue<E> extends Ab
624       * promoting x up the tree until it is greater than or equal to
625       * its parent, or is the root.
626       *
627 <     * To simplify and speed up coercions and comparisons. the
627 >     * To simplify and speed up coercions and comparisons, the
628       * Comparable and Comparator versions are separated into different
629       * methods that are otherwise identical. (Similarly for siftDown.)
630       *
# Line 552 | Line 633 | public class PriorityQueue<E> extends Ab
633       */
634      private void siftUp(int k, E x) {
635          if (comparator != null)
636 <            siftUpUsingComparator(k, x);
636 >            siftUpUsingComparator(k, x, queue, comparator);
637          else
638 <            siftUpComparable(k, x);
638 >            siftUpComparable(k, x, queue);
639      }
640  
641 <    private void siftUpComparable(int k, E x) {
642 <        Comparable<? super E> key = (Comparable<? super E>) x;
641 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
642 >        Comparable<? super T> key = (Comparable<? super T>) x;
643          while (k > 0) {
644              int parent = (k - 1) >>> 1;
645 <            Object e = queue[parent];
646 <            if (key.compareTo((E)e) >= 0)
645 >            Object e = es[parent];
646 >            if (key.compareTo((T) e) >= 0)
647                  break;
648 <            queue[k] = e;
648 >            es[k] = e;
649              k = parent;
650          }
651 <        queue[k] = key;
651 >        es[k] = key;
652      }
653  
654 <    private void siftUpUsingComparator(int k, E x) {
654 >    private static <T> void siftUpUsingComparator(
655 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
656          while (k > 0) {
657              int parent = (k - 1) >>> 1;
658 <            Object e = queue[parent];
659 <            if (comparator.compare(x, (E)e) >= 0)
658 >            Object e = es[parent];
659 >            if (cmp.compare(x, (T) e) >= 0)
660                  break;
661 <            queue[k] = e;
661 >            es[k] = e;
662              k = parent;
663          }
664 <        queue[k] = x;
664 >        es[k] = x;
665      }
666  
667      /**
# Line 592 | Line 674 | public class PriorityQueue<E> extends Ab
674       */
675      private void siftDown(int k, E x) {
676          if (comparator != null)
677 <            siftDownUsingComparator(k, x);
677 >            siftDownUsingComparator(k, x, queue, size, comparator);
678          else
679 <            siftDownComparable(k, x);
679 >            siftDownComparable(k, x, queue, size);
680      }
681  
682 <    private void siftDownComparable(int k, E x) {
683 <        Comparable<? super E> key = (Comparable<? super E>)x;
684 <        int half = size >>> 1;        // loop while a non-leaf
682 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
683 >        // assert n > 0;
684 >        Comparable<? super T> key = (Comparable<? super T>)x;
685 >        int half = n >>> 1;           // loop while a non-leaf
686          while (k < half) {
687              int child = (k << 1) + 1; // assume left child is least
688 <            Object c = queue[child];
688 >            Object c = es[child];
689              int right = child + 1;
690 <            if (right < size &&
691 <                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
692 <                c = queue[child = right];
693 <            if (key.compareTo((E)c) <= 0)
690 >            if (right < n &&
691 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
692 >                c = es[child = right];
693 >            if (key.compareTo((T) c) <= 0)
694                  break;
695 <            queue[k] = c;
695 >            es[k] = c;
696              k = child;
697          }
698 <        queue[k] = key;
698 >        es[k] = key;
699      }
700  
701 <    private void siftDownUsingComparator(int k, E x) {
702 <        int half = size >>> 1;
701 >    private static <T> void siftDownUsingComparator(
702 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
703 >        // assert n > 0;
704 >        int half = n >>> 1;
705          while (k < half) {
706              int child = (k << 1) + 1;
707 <            Object c = queue[child];
707 >            Object c = es[child];
708              int right = child + 1;
709 <            if (right < size &&
710 <                comparator.compare((E)c, (E)queue[right]) > 0)
711 <                c = queue[child = right];
627 <            if (comparator.compare(x, (E)c) <= 0)
709 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
710 >                c = es[child = right];
711 >            if (cmp.compare(x, (T) c) <= 0)
712                  break;
713 <            queue[k] = c;
713 >            es[k] = c;
714              k = child;
715          }
716 <        queue[k] = x;
716 >        es[k] = x;
717      }
718  
719      /**
720       * Establishes the heap invariant (described above) in the entire tree,
721       * assuming nothing about the order of the elements prior to the call.
722 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
723       */
724      private void heapify() {
725 <        for (int i = (size >>> 1) - 1; i >= 0; i--)
726 <            siftDown(i, (E)queue[i]);
725 >        final Object[] es = queue;
726 >        int n = size, i = (n >>> 1) - 1;
727 >        final Comparator<? super E> cmp;
728 >        if ((cmp = comparator) == null)
729 >            for (; i >= 0; i--)
730 >                siftDownComparable(i, (E) es[i], es, n);
731 >        else
732 >            for (; i >= 0; i--)
733 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
734      }
735  
736      /**
737       * Returns the comparator used to order the elements in this
738 <     * queue, or <tt>null</tt> if this queue is sorted according to
738 >     * queue, or {@code null} if this queue is sorted according to
739       * the {@linkplain Comparable natural ordering} of its elements.
740       *
741       * @return the comparator used to order this queue, or
742 <     *         <tt>null</tt> if this queue is sorted according to the
743 <     *         natural ordering of its elements.
742 >     *         {@code null} if this queue is sorted according to the
743 >     *         natural ordering of its elements
744       */
745      public Comparator<? super E> comparator() {
746          return comparator;
747      }
748  
749      /**
750 <     * Save the state of the instance to a stream (that
659 <     * is, serialize it).
750 >     * Saves this queue to a stream (that is, serializes it).
751       *
661     * @serialData The length of the array backing the instance is
662     * emitted (int), followed by all of its elements (each an
663     * <tt>Object</tt>) in the proper order.
752       * @param s the stream
753 +     * @throws java.io.IOException if an I/O error occurs
754 +     * @serialData The length of the array backing the instance is
755 +     *             emitted (int), followed by all of its elements
756 +     *             (each an {@code Object}) in the proper order.
757       */
758      private void writeObject(java.io.ObjectOutputStream s)
759 <        throws java.io.IOException{
759 >        throws java.io.IOException {
760          // Write out element count, and any hidden stuff
761          s.defaultWriteObject();
762  
763 <        // Write out array length
764 <        // For compatibility with 1.5 version, must be at least 2.
673 <        s.writeInt(Math.max(2, queue.length));
763 >        // Write out array length, for compatibility with 1.5 version
764 >        s.writeInt(Math.max(2, size + 1));
765  
766 <        // Write out all elements in the proper order.
767 <        for (int i=0; i<size; i++)
768 <            s.writeObject(queue[i]);
766 >        // Write out all elements in the "proper order".
767 >        final Object[] es = queue;
768 >        for (int i = 0, n = size; i < n; i++)
769 >            s.writeObject(es[i]);
770      }
771  
772      /**
773 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
774 <     * (that is, deserialize it).
773 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
774 >     * (that is, deserializes it).
775 >     *
776       * @param s the stream
777 +     * @throws ClassNotFoundException if the class of a serialized object
778 +     *         could not be found
779 +     * @throws java.io.IOException if an I/O error occurs
780       */
781      private void readObject(java.io.ObjectInputStream s)
782          throws java.io.IOException, ClassNotFoundException {
783          // Read in size, and any hidden stuff
784          s.defaultReadObject();
785  
786 <        // Read in array length and allocate array
787 <        int arrayLength = s.readInt();
788 <        queue = new Object[arrayLength];
789 <
790 <        // Read in all elements in the proper order.
791 <        for (int i=0; i<size; i++)
792 <            queue[i] = (E) s.readObject();
786 >        // Read in (and discard) array length
787 >        s.readInt();
788 >
789 >        jsr166.Platform.checkArray(s, Object[].class, size);
790 >        final Object[] es = queue = new Object[Math.max(size, 1)];
791 >
792 >        // Read in all elements.
793 >        for (int i = 0, n = size; i < n; i++)
794 >            es[i] = s.readObject();
795 >
796 >        // Elements are guaranteed to be in "proper order", but the
797 >        // spec has never explained what that might be.
798 >        heapify();
799 >    }
800 >
801 >    /**
802 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 >     * queue. The spliterator does not traverse elements in any particular order
805 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 >     *
807 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 >     * Overriding implementations should document the reporting of additional
810 >     * characteristic values.
811 >     *
812 >     * @return a {@code Spliterator} over the elements in this queue
813 >     * @since 1.8
814 >     */
815 >    public final Spliterator<E> spliterator() {
816 >        return new PriorityQueueSpliterator(0, -1, 0);
817 >    }
818 >
819 >    final class PriorityQueueSpliterator implements Spliterator<E> {
820 >        private int index;            // current index, modified on advance/split
821 >        private int fence;            // -1 until first use
822 >        private int expectedModCount; // initialized when fence set
823 >
824 >        /** Creates new spliterator covering the given range. */
825 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
826 >            this.index = origin;
827 >            this.fence = fence;
828 >            this.expectedModCount = expectedModCount;
829 >        }
830 >
831 >        private int getFence() { // initialize fence to size on first use
832 >            int hi;
833 >            if ((hi = fence) < 0) {
834 >                expectedModCount = modCount;
835 >                hi = fence = size;
836 >            }
837 >            return hi;
838 >        }
839 >
840 >        public PriorityQueueSpliterator trySplit() {
841 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
842 >            return (lo >= mid) ? null :
843 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
844 >        }
845 >
846 >        public void forEachRemaining(Consumer<? super E> action) {
847 >            if (action == null)
848 >                throw new NullPointerException();
849 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
850 >            final Object[] es = queue;
851 >            int i, hi; E e;
852 >            for (i = index, index = hi = fence; i < hi; i++) {
853 >                if ((e = (E) es[i]) == null)
854 >                    break;      // must be CME
855 >                action.accept(e);
856 >            }
857 >            if (modCount != expectedModCount)
858 >                throw new ConcurrentModificationException();
859 >        }
860 >
861 >        public boolean tryAdvance(Consumer<? super E> action) {
862 >            if (action == null)
863 >                throw new NullPointerException();
864 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 >            int i;
866 >            if ((i = index) < fence) {
867 >                index = i + 1;
868 >                E e;
869 >                if ((e = (E) queue[i]) == null
870 >                    || modCount != expectedModCount)
871 >                    throw new ConcurrentModificationException();
872 >                action.accept(e);
873 >                return true;
874 >            }
875 >            return false;
876 >        }
877 >
878 >        public long estimateSize() {
879 >            return getFence() - index;
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884 >        }
885      }
886  
887 +    /**
888 +     * @throws NullPointerException {@inheritDoc}
889 +     */
890 +    public boolean removeIf(Predicate<? super E> filter) {
891 +        Objects.requireNonNull(filter);
892 +        return bulkRemove(filter);
893 +    }
894 +
895 +    /**
896 +     * @throws NullPointerException {@inheritDoc}
897 +     */
898 +    public boolean removeAll(Collection<?> c) {
899 +        Objects.requireNonNull(c);
900 +        return bulkRemove(e -> c.contains(e));
901 +    }
902 +
903 +    /**
904 +     * @throws NullPointerException {@inheritDoc}
905 +     */
906 +    public boolean retainAll(Collection<?> c) {
907 +        Objects.requireNonNull(c);
908 +        return bulkRemove(e -> !c.contains(e));
909 +    }
910 +
911 +    // A tiny bit set implementation
912 +
913 +    private static long[] nBits(int n) {
914 +        return new long[((n - 1) >> 6) + 1];
915 +    }
916 +    private static void setBit(long[] bits, int i) {
917 +        bits[i >> 6] |= 1L << i;
918 +    }
919 +    private static boolean isClear(long[] bits, int i) {
920 +        return (bits[i >> 6] & (1L << i)) == 0;
921 +    }
922 +
923 +    /** Implementation of bulk remove methods. */
924 +    private boolean bulkRemove(Predicate<? super E> filter) {
925 +        final int expectedModCount = ++modCount;
926 +        final Object[] es = queue;
927 +        final int end = size;
928 +        int i;
929 +        // Optimize for initial run of survivors
930 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
931 +            ;
932 +        if (i >= end) {
933 +            if (modCount != expectedModCount)
934 +                throw new ConcurrentModificationException();
935 +            return false;
936 +        }
937 +        // Tolerate predicates that reentrantly access the collection for
938 +        // read (but writers still get CME), so traverse once to find
939 +        // elements to delete, a second pass to physically expunge.
940 +        final int beg = i;
941 +        final long[] deathRow = nBits(end - beg);
942 +        deathRow[0] = 1L;   // set bit 0
943 +        for (i = beg + 1; i < end; i++)
944 +            if (filter.test((E) es[i]))
945 +                setBit(deathRow, i - beg);
946 +        if (modCount != expectedModCount)
947 +            throw new ConcurrentModificationException();
948 +        int w = beg;
949 +        for (i = beg; i < end; i++)
950 +            if (isClear(deathRow, i - beg))
951 +                es[w++] = es[i];
952 +        for (i = size = w; i < end; i++)
953 +            es[i] = null;
954 +        heapify();
955 +        return true;
956 +    }
957 +
958 +    /**
959 +     * @throws NullPointerException {@inheritDoc}
960 +     */
961 +    public void forEach(Consumer<? super E> action) {
962 +        Objects.requireNonNull(action);
963 +        final int expectedModCount = modCount;
964 +        final Object[] es = queue;
965 +        for (int i = 0, n = size; i < n; i++)
966 +            action.accept((E) es[i]);
967 +        if (expectedModCount != modCount)
968 +            throw new ConcurrentModificationException();
969 +    }
970   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines