ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.3 by tim, Sun May 18 20:36:01 2003 UTC vs.
Revision 1.133 by jsr166, Thu Oct 10 16:53:08 2019 UTC

# Line 1 | Line 1
1 package java.util;
2
1   /*
2 < * Todo
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20   *
21 < *   1) Make it serializable.
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26 + package java.util;
27 +
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + // OPENJDK import jdk.internal.access.SharedSecrets;
31 + import jdk.internal.util.ArraysSupport;
32 +
33   /**
34 < * An unbounded priority queue based on a priority heap.  This queue orders
35 < * elements according to the order specified at creation time.  This order is
36 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
37 < * either according to their <i>natural order</i> (see {@link Comparable}), or
38 < * according to a {@link Comparator}, depending on which constructor is used.
39 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
40 < * minimal element with respect to the specified ordering.  If multiple
41 < * these elements are tied for least value, no guarantees are made as to
42 < * which of elements is returned.
43 < *
44 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
45 < * the array used to store the elements on the queue.  It is always at least
46 < * as large as the queue size.  As elements are added to a priority list,
47 < * its capacity grows automatically.  The details of the growth policy are not
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42 > *
43 > * <p>The <em>head</em> of this queue is the <em>least</em> element
44 > * with respect to the specified ordering.  If multiple elements are
45 > * tied for least value, the head is one of those elements -- ties are
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48 > * element at the head of the queue.
49 > *
50 > * <p>A priority queue is unbounded, but has an internal
51 > * <i>capacity</i> governing the size of an array used to store the
52 > * elements on the queue.  It is always at least as large as the queue
53 > * size.  As elements are added to a priority queue, its capacity
54 > * grows automatically.  The details of the growth policy are not
55   * specified.
56   *
57 < *<p>Implementation note: this implementation provides O(log(n)) time for
58 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
59 < * methods; linear time for the <tt>remove(Object)</tt> and
60 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
61 < * <tt>element</tt>, and <tt>size</tt> methods.
57 > * <p>This class and its iterator implement all of the
58 > * <em>optional</em> methods of the {@link Collection} and {@link
59 > * Iterator} interfaces.  The Iterator provided in method {@link
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62 > * the priority queue in any particular order. If you need ordered
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 > *
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69 > * java.util.concurrent.PriorityBlockingQueue} class.
70 > *
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../guide/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81 + *
82 + * @since 1.5
83 + * @author Josh Bloch, Doug Lea
84 + * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88 <                              implements Queue<E>
89 < {
88 >    implements java.io.Serializable {
89 >
90 >    // OPENJDK @java.io.Serial
91 >    private static final long serialVersionUID = -7720805057305804111L;
92 >
93      private static final int DEFAULT_INITIAL_CAPACITY = 11;
94  
95      /**
96 <     * Priority queue represented as a balanced binary heap: the two children
97 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
98 <     * ordered by comparator, or by the elements' natural ordering, if
99 <     * comparator is null:  For each node n in the heap, and each descendant
100 <     * of n, d, n <= d.
101 <     *
48 <     * The element with the lowest value is in queue[1] (assuming the queue is
49 <     * nonempty). A one-based array is used in preference to the traditional
50 <     * zero-based array to simplify parent and child calculations.
51 <     *
52 <     * queue.length must be >= 2, even if size == 0.
96 >     * Priority queue represented as a balanced binary heap: the two
97 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
98 >     * priority queue is ordered by comparator, or by the elements'
99 >     * natural ordering, if comparator is null: For each node n in the
100 >     * heap and each descendant d of n, n <= d.  The element with the
101 >     * lowest value is in queue[0], assuming the queue is nonempty.
102       */
103 <    private E[] queue;
103 >    transient Object[] queue; // non-private to simplify nested class access
104  
105      /**
106       * The number of elements in the priority queue.
107       */
108 <    private int size = 0;
108 >    int size;
109  
110      /**
111       * The comparator, or null if priority queue uses elements'
112       * natural ordering.
113       */
114 <    private final Comparator<E> comparator;
114 >    @SuppressWarnings("serial") // Conditionally serializable
115 >    private final Comparator<? super E> comparator;
116  
117      /**
118       * The number of times this priority queue has been
119       * <i>structurally modified</i>.  See AbstractList for gory details.
120       */
121 <    private int modCount = 0;
121 >    transient int modCount;     // non-private to simplify nested class access
122  
123      /**
124 <     * Create a new priority queue with the default initial capacity (11)
125 <     * that orders its elements according to their natural ordering.
124 >     * Creates a {@code PriorityQueue} with the default initial
125 >     * capacity (11) that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127       */
128      public PriorityQueue() {
129 <        this(DEFAULT_INITIAL_CAPACITY);
129 >        this(DEFAULT_INITIAL_CAPACITY, null);
130      }
131  
132      /**
133 <     * Create a new priority queue with the specified initial capacity
134 <     * that orders its elements according to their natural ordering.
133 >     * Creates a {@code PriorityQueue} with the specified initial
134 >     * capacity that orders its elements according to their
135 >     * {@linkplain Comparable natural ordering}.
136       *
137 <     * @param initialCapacity the initial capacity for this priority queue.
137 >     * @param initialCapacity the initial capacity for this priority queue
138 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
139 >     *         than 1
140       */
141      public PriorityQueue(int initialCapacity) {
142          this(initialCapacity, null);
143      }
144  
145      /**
146 <     * Create a new priority queue with the specified initial capacity (11)
147 <     * that orders its elements according to the specified comparator.
146 >     * Creates a {@code PriorityQueue} with the default initial capacity and
147 >     * whose elements are ordered according to the specified comparator.
148       *
149 <     * @param initialCapacity the initial capacity for this priority queue.
150 <     * @param comparator the comparator used to order this priority queue.
149 >     * @param  comparator the comparator that will be used to order this
150 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
151 >     *         natural ordering} of the elements will be used.
152 >     * @since 1.8
153       */
154 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
154 >    public PriorityQueue(Comparator<? super E> comparator) {
155 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
156 >    }
157 >
158 >    /**
159 >     * Creates a {@code PriorityQueue} with the specified initial capacity
160 >     * that orders its elements according to the specified comparator.
161 >     *
162 >     * @param  initialCapacity the initial capacity for this priority queue
163 >     * @param  comparator the comparator that will be used to order this
164 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
165 >     *         natural ordering} of the elements will be used.
166 >     * @throws IllegalArgumentException if {@code initialCapacity} is
167 >     *         less than 1
168 >     */
169 >    public PriorityQueue(int initialCapacity,
170 >                         Comparator<? super E> comparator) {
171 >        // Note: This restriction of at least one is not actually needed,
172 >        // but continues for 1.5 compatibility
173          if (initialCapacity < 1)
174 <            initialCapacity = 1;
175 <        queue = new E[initialCapacity + 1];
174 >            throw new IllegalArgumentException();
175 >        this.queue = new Object[initialCapacity];
176          this.comparator = comparator;
177      }
178  
179      /**
180 <     * Create a new priority queue containing the elements in the specified
181 <     * collection.  The priority queue has an initial capacity of 110% of the
182 <     * size of the specified collection. If the specified collection
183 <     * implements the {@link Sorted} interface, the priority queue will be
184 <     * sorted according to the same comparator, or according to its elements'
185 <     * natural order if the collection is sorted according to its elements'
112 <     * natural order.  If the specified collection does not implement the
113 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 <     * its elements' natural order.
180 >     * Creates a {@code PriorityQueue} containing the elements in the
181 >     * specified collection.  If the specified collection is an instance of
182 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
183 >     * priority queue will be ordered according to the same ordering.
184 >     * Otherwise, this priority queue will be ordered according to the
185 >     * {@linkplain Comparable natural ordering} of its elements.
186       *
187 <     * @param initialElements the collection whose elements are to be placed
188 <     *        into this priority queue.
187 >     * @param  c the collection whose elements are to be placed
188 >     *         into this priority queue
189       * @throws ClassCastException if elements of the specified collection
190       *         cannot be compared to one another according to the priority
191 <     *         queue's ordering.
192 <     * @throws NullPointerException if the specified collection or an
193 <     *         element of the specified collection is <tt>null</tt>.
194 <     */
195 <    public PriorityQueue(Collection<E> initialElements) {
196 <        int sz = initialElements.size();
197 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
198 <                                            Integer.MAX_VALUE - 1);
199 <        if (initialCapacity < 1)
200 <            initialCapacity = 1;
201 <        queue = new E[initialCapacity + 1];
191 >     *         queue's ordering
192 >     * @throws NullPointerException if the specified collection or any
193 >     *         of its elements are null
194 >     */
195 >    public PriorityQueue(Collection<? extends E> c) {
196 >        if (c instanceof SortedSet<?>) {
197 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
198 >            this.comparator = (Comparator<? super E>) ss.comparator();
199 >            initElementsFromCollection(ss);
200 >        }
201 >        else if (c instanceof PriorityQueue<?>) {
202 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
203 >            this.comparator = (Comparator<? super E>) pq.comparator();
204 >            initFromPriorityQueue(pq);
205 >        }
206 >        else {
207 >            this.comparator = null;
208 >            initFromCollection(c);
209 >        }
210 >    }
211  
212 <        /* Commented out to compile with generics compiler
212 >    /**
213 >     * Creates a {@code PriorityQueue} containing the elements in the
214 >     * specified priority queue.  This priority queue will be
215 >     * ordered according to the same ordering as the given priority
216 >     * queue.
217 >     *
218 >     * @param  c the priority queue whose elements are to be placed
219 >     *         into this priority queue
220 >     * @throws ClassCastException if elements of {@code c} cannot be
221 >     *         compared to one another according to {@code c}'s
222 >     *         ordering
223 >     * @throws NullPointerException if the specified priority queue or any
224 >     *         of its elements are null
225 >     */
226 >    public PriorityQueue(PriorityQueue<? extends E> c) {
227 >        this.comparator = (Comparator<? super E>) c.comparator();
228 >        initFromPriorityQueue(c);
229 >    }
230  
231 <        if (initialElements instanceof Sorted) {
232 <            comparator = ((Sorted)initialElements).comparator();
233 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
234 <                queue[++size] = i.next();
231 >    /**
232 >     * Creates a {@code PriorityQueue} containing the elements in the
233 >     * specified sorted set.   This priority queue will be ordered
234 >     * according to the same ordering as the given sorted set.
235 >     *
236 >     * @param  c the sorted set whose elements are to be placed
237 >     *         into this priority queue
238 >     * @throws ClassCastException if elements of the specified sorted
239 >     *         set cannot be compared to one another according to the
240 >     *         sorted set's ordering
241 >     * @throws NullPointerException if the specified sorted set or any
242 >     *         of its elements are null
243 >     */
244 >    public PriorityQueue(SortedSet<? extends E> c) {
245 >        this.comparator = (Comparator<? super E>) c.comparator();
246 >        initElementsFromCollection(c);
247 >    }
248 >
249 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
250 >    private static Object[] ensureNonEmpty(Object[] es) {
251 >        return (es.length > 0) ? es : new Object[1];
252 >    }
253 >
254 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
255 >        if (c.getClass() == PriorityQueue.class) {
256 >            this.queue = ensureNonEmpty(c.toArray());
257 >            this.size = c.size();
258          } else {
259 <        */
140 <        {
141 <            comparator = null;
142 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
143 <                add(i.next());
259 >            initFromCollection(c);
260          }
261      }
262  
263 <    // Queue Methods
263 >    private void initElementsFromCollection(Collection<? extends E> c) {
264 >        Object[] es = c.toArray();
265 >        int len = es.length;
266 >        // If c.toArray incorrectly doesn't return Object[], copy it.
267 >        if (es.getClass() != Object[].class)
268 >            es = Arrays.copyOf(es, len, Object[].class);
269 >        if (len == 1 || this.comparator != null)
270 >            for (Object e : es)
271 >                if (e == null)
272 >                    throw new NullPointerException();
273 >        this.queue = ensureNonEmpty(es);
274 >        this.size = len;
275 >    }
276  
277      /**
278 <     * Remove and return the minimal element from this priority queue if
151 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
152 <     * <i>minimal</i> is defined according to this priority queue's order.
278 >     * Initializes queue array with elements from the given Collection.
279       *
280 <     * @return the minimal element from this priority queue if it contains
155 <     *         one or more elements, otherwise <tt>null</tt>.
280 >     * @param c the collection
281       */
282 <    public E poll() {
283 <        if (size == 0)
284 <            return null;
285 <        return remove(1);
282 >    private void initFromCollection(Collection<? extends E> c) {
283 >        initElementsFromCollection(c);
284 >        heapify();
285 >    }
286 >
287 >    /**
288 >     * Increases the capacity of the array.
289 >     *
290 >     * @param minCapacity the desired minimum capacity
291 >     */
292 >    private void grow(int minCapacity) {
293 >        int oldCapacity = queue.length;
294 >        // Double size if small; else grow by 50%
295 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
296 >                minCapacity - oldCapacity, /* minimum growth */
297 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
298 >                                           /* preferred growth */);
299 >        queue = Arrays.copyOf(queue, newCapacity);
300 >    }
301 >
302 >    /**
303 >     * Inserts the specified element into this priority queue.
304 >     *
305 >     * @return {@code true} (as specified by {@link Collection#add})
306 >     * @throws ClassCastException if the specified element cannot be
307 >     *         compared with elements currently in this priority queue
308 >     *         according to the priority queue's ordering
309 >     * @throws NullPointerException if the specified element is null
310 >     */
311 >    public boolean add(E e) {
312 >        return offer(e);
313      }
314  
315      /**
316 <     * Return, but do not remove, the minimal element from the priority queue,
165 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
166 <     * defined according to this priority queue's order.  This method returns
167 <     * the same object reference that would be returned by by the
168 <     * <tt>poll</tt> method.  The two methods differ in that this method
169 <     * does not remove the element from the priority queue.
316 >     * Inserts the specified element into this priority queue.
317       *
318 <     * @return the minimal element from this priority queue if it contains
319 <     *         one or more elements, otherwise <tt>null</tt>.
318 >     * @return {@code true} (as specified by {@link Queue#offer})
319 >     * @throws ClassCastException if the specified element cannot be
320 >     *         compared with elements currently in this priority queue
321 >     *         according to the priority queue's ordering
322 >     * @throws NullPointerException if the specified element is null
323       */
324 +    public boolean offer(E e) {
325 +        if (e == null)
326 +            throw new NullPointerException();
327 +        modCount++;
328 +        int i = size;
329 +        if (i >= queue.length)
330 +            grow(i + 1);
331 +        siftUp(i, e);
332 +        size = i + 1;
333 +        return true;
334 +    }
335 +
336      public E peek() {
337 <        return queue[1];
337 >        return (E) queue[0];
338      }
339  
340 <    // Collection Methods
340 >    private int indexOf(Object o) {
341 >        if (o != null) {
342 >            final Object[] es = queue;
343 >            for (int i = 0, n = size; i < n; i++)
344 >                if (o.equals(es[i]))
345 >                    return i;
346 >        }
347 >        return -1;
348 >    }
349  
350      /**
351 <     * Removes a single instance of the specified element from this priority
352 <     * queue, if it is present.  Returns true if this collection contained the
353 <     * specified element (or equivalently, if this collection changed as a
351 >     * Removes a single instance of the specified element from this queue,
352 >     * if it is present.  More formally, removes an element {@code e} such
353 >     * that {@code o.equals(e)}, if this queue contains one or more such
354 >     * elements.  Returns {@code true} if and only if this queue contained
355 >     * the specified element (or equivalently, if this queue changed as a
356       * result of the call).
357       *
358 <     * @param o element to be removed from this collection, if present.
359 <     * @return <tt>true</tt> if this collection changed as a result of the
188 <     *         call
189 <     * @throws ClassCastException if the specified element cannot be compared
190 <     *            with elements currently in the priority queue according
191 <     *            to the priority queue's ordering.
192 <     * @throws NullPointerException if the specified element is null.
358 >     * @param o element to be removed from this queue, if present
359 >     * @return {@code true} if this queue changed as a result of the call
360       */
361 <    public boolean remove(Object element) {
362 <        if (element == null)
363 <            throw new NullPointerException();
361 >    public boolean remove(Object o) {
362 >        int i = indexOf(o);
363 >        if (i == -1)
364 >            return false;
365 >        else {
366 >            removeAt(i);
367 >            return true;
368 >        }
369 >    }
370  
371 <        if (comparator == null) {
372 <            for (int i = 1; i <= size; i++) {
373 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
374 <                    remove(i);
375 <                    return true;
376 <                }
377 <            }
378 <        } else {
379 <            for (int i = 1; i <= size; i++) {
380 <                if (comparator.compare(queue[i], (E) element) == 0) {
381 <                    remove(i);
209 <                    return true;
210 <                }
371 >    /**
372 >     * Identity-based version for use in Itr.remove.
373 >     *
374 >     * @param o element to be removed from this queue, if present
375 >     */
376 >    void removeEq(Object o) {
377 >        final Object[] es = queue;
378 >        for (int i = 0, n = size; i < n; i++) {
379 >            if (o == es[i]) {
380 >                removeAt(i);
381 >                break;
382              }
383          }
213        return false;
384      }
385  
386      /**
387 <     * Returns an iterator over the elements in this priority queue.  The
388 <     * first element returned by this iterator is the same element that
389 <     * would be returned by a call to <tt>peek</tt>.
387 >     * Returns {@code true} if this queue contains the specified element.
388 >     * More formally, returns {@code true} if and only if this queue contains
389 >     * at least one element {@code e} such that {@code o.equals(e)}.
390 >     *
391 >     * @param o object to be checked for containment in this queue
392 >     * @return {@code true} if this queue contains the specified element
393 >     */
394 >    public boolean contains(Object o) {
395 >        return indexOf(o) >= 0;
396 >    }
397 >
398 >    /**
399 >     * Returns an array containing all of the elements in this queue.
400 >     * The elements are in no particular order.
401 >     *
402 >     * <p>The returned array will be "safe" in that no references to it are
403 >     * maintained by this queue.  (In other words, this method must allocate
404 >     * a new array).  The caller is thus free to modify the returned array.
405 >     *
406 >     * <p>This method acts as bridge between array-based and collection-based
407 >     * APIs.
408 >     *
409 >     * @return an array containing all of the elements in this queue
410 >     */
411 >    public Object[] toArray() {
412 >        return Arrays.copyOf(queue, size);
413 >    }
414 >
415 >    /**
416 >     * Returns an array containing all of the elements in this queue; the
417 >     * runtime type of the returned array is that of the specified array.
418 >     * The returned array elements are in no particular order.
419 >     * If the queue fits in the specified array, it is returned therein.
420 >     * Otherwise, a new array is allocated with the runtime type of the
421 >     * specified array and the size of this queue.
422 >     *
423 >     * <p>If the queue fits in the specified array with room to spare
424 >     * (i.e., the array has more elements than the queue), the element in
425 >     * the array immediately following the end of the collection is set to
426 >     * {@code null}.
427 >     *
428 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429 >     * array-based and collection-based APIs.  Further, this method allows
430 >     * precise control over the runtime type of the output array, and may,
431 >     * under certain circumstances, be used to save allocation costs.
432 >     *
433 >     * <p>Suppose {@code x} is a queue known to contain only strings.
434 >     * The following code can be used to dump the queue into a newly
435 >     * allocated array of {@code String}:
436 >     *
437 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
438 >     *
439 >     * Note that {@code toArray(new Object[0])} is identical in function to
440 >     * {@code toArray()}.
441       *
442 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
442 >     * @param a the array into which the elements of the queue are to
443 >     *          be stored, if it is big enough; otherwise, a new array of the
444 >     *          same runtime type is allocated for this purpose.
445 >     * @return an array containing all of the elements in this queue
446 >     * @throws ArrayStoreException if the runtime type of the specified array
447 >     *         is not a supertype of the runtime type of every element in
448 >     *         this queue
449 >     * @throws NullPointerException if the specified array is null
450 >     */
451 >    public <T> T[] toArray(T[] a) {
452 >        final int size = this.size;
453 >        if (a.length < size)
454 >            // Make a new array of a's runtime type, but my contents:
455 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
456 >        System.arraycopy(queue, 0, a, 0, size);
457 >        if (a.length > size)
458 >            a[size] = null;
459 >        return a;
460 >    }
461 >
462 >    /**
463 >     * Returns an iterator over the elements in this queue. The iterator
464 >     * does not return the elements in any particular order.
465 >     *
466 >     * @return an iterator over the elements in this queue
467       */
468      public Iterator<E> iterator() {
469          return new Itr();
470      }
471  
472 <    private class Itr implements Iterator<E> {
472 >    private final class Itr implements Iterator<E> {
473          /**
474           * Index (into queue array) of element to be returned by
475           * subsequent call to next.
476           */
477 <        int cursor = 1;
477 >        private int cursor;
478 >
479 >        /**
480 >         * Index of element returned by most recent call to next,
481 >         * unless that element came from the forgetMeNot list.
482 >         * Set to -1 if element is deleted by a call to remove.
483 >         */
484 >        private int lastRet = -1;
485 >
486 >        /**
487 >         * A queue of elements that were moved from the unvisited portion of
488 >         * the heap into the visited portion as a result of "unlucky" element
489 >         * removals during the iteration.  (Unlucky element removals are those
490 >         * that require a siftup instead of a siftdown.)  We must visit all of
491 >         * the elements in this list to complete the iteration.  We do this
492 >         * after we've completed the "normal" iteration.
493 >         *
494 >         * We expect that most iterations, even those involving removals,
495 >         * will not need to store elements in this field.
496 >         */
497 >        private ArrayDeque<E> forgetMeNot;
498  
499          /**
500 <         * Index of element returned by most recent call to next or
501 <         * previous.  Reset to 0 if this element is deleted by a call
237 <         * to remove.
500 >         * Element returned by the most recent call to next iff that
501 >         * element was drawn from the forgetMeNot list.
502           */
503 <        int lastRet = 0;
503 >        private E lastRetElt;
504  
505          /**
506           * The modCount value that the iterator believes that the backing
507 <         * List should have.  If this expectation is violated, the iterator
507 >         * Queue should have.  If this expectation is violated, the iterator
508           * has detected concurrent modification.
509           */
510 <        int expectedModCount = modCount;
510 >        private int expectedModCount = modCount;
511 >
512 >        Itr() {}                        // prevent access constructor creation
513  
514          public boolean hasNext() {
515 <            return cursor <= size;
515 >            return cursor < size ||
516 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
517          }
518  
519          public E next() {
520 <            checkForComodification();
521 <            if (cursor > size)
522 <                throw new NoSuchElementException();
523 <            E result = queue[cursor];
524 <            lastRet = cursor++;
525 <            return result;
520 >            if (expectedModCount != modCount)
521 >                throw new ConcurrentModificationException();
522 >            if (cursor < size)
523 >                return (E) queue[lastRet = cursor++];
524 >            if (forgetMeNot != null) {
525 >                lastRet = -1;
526 >                lastRetElt = forgetMeNot.poll();
527 >                if (lastRetElt != null)
528 >                    return lastRetElt;
529 >            }
530 >            throw new NoSuchElementException();
531          }
532  
533          public void remove() {
534 <            if (lastRet == 0)
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (lastRet != -1) {
537 >                E moved = PriorityQueue.this.removeAt(lastRet);
538 >                lastRet = -1;
539 >                if (moved == null)
540 >                    cursor--;
541 >                else {
542 >                    if (forgetMeNot == null)
543 >                        forgetMeNot = new ArrayDeque<>();
544 >                    forgetMeNot.add(moved);
545 >                }
546 >            } else if (lastRetElt != null) {
547 >                PriorityQueue.this.removeEq(lastRetElt);
548 >                lastRetElt = null;
549 >            } else {
550                  throw new IllegalStateException();
551 <            checkForComodification();
265 <
266 <            PriorityQueue.this.remove(lastRet);
267 <            if (lastRet < cursor)
268 <                cursor--;
269 <            lastRet = 0;
551 >            }
552              expectedModCount = modCount;
553          }
554 +    }
555  
556 <        final void checkForComodification() {
557 <            if (modCount != expectedModCount)
558 <                throw new ConcurrentModificationException();
556 >    public int size() {
557 >        return size;
558 >    }
559 >
560 >    /**
561 >     * Removes all of the elements from this priority queue.
562 >     * The queue will be empty after this call returns.
563 >     */
564 >    public void clear() {
565 >        modCount++;
566 >        final Object[] es = queue;
567 >        for (int i = 0, n = size; i < n; i++)
568 >            es[i] = null;
569 >        size = 0;
570 >    }
571 >
572 >    public E poll() {
573 >        final Object[] es;
574 >        final E result;
575 >
576 >        if ((result = (E) ((es = queue)[0])) != null) {
577 >            modCount++;
578 >            final int n;
579 >            final E x = (E) es[(n = --size)];
580 >            es[n] = null;
581 >            if (n > 0) {
582 >                final Comparator<? super E> cmp;
583 >                if ((cmp = comparator) == null)
584 >                    siftDownComparable(0, x, es, n);
585 >                else
586 >                    siftDownUsingComparator(0, x, es, n, cmp);
587 >            }
588          }
589 +        return result;
590      }
591  
592      /**
593 <     * Returns the number of elements in this priority queue.
593 >     * Removes the ith element from queue.
594       *
595 <     * @return the number of elements in this priority queue.
596 <     */
597 <    public int size() {
598 <        return size;
595 >     * Normally this method leaves the elements at up to i-1,
596 >     * inclusive, untouched.  Under these circumstances, it returns
597 >     * null.  Occasionally, in order to maintain the heap invariant,
598 >     * it must swap a later element of the list with one earlier than
599 >     * i.  Under these circumstances, this method returns the element
600 >     * that was previously at the end of the list and is now at some
601 >     * position before i. This fact is used by iterator.remove so as to
602 >     * avoid missing traversing elements.
603 >     */
604 >    E removeAt(int i) {
605 >        // assert i >= 0 && i < size;
606 >        final Object[] es = queue;
607 >        modCount++;
608 >        int s = --size;
609 >        if (s == i) // removed last element
610 >            es[i] = null;
611 >        else {
612 >            E moved = (E) es[s];
613 >            es[s] = null;
614 >            siftDown(i, moved);
615 >            if (es[i] == moved) {
616 >                siftUp(i, moved);
617 >                if (es[i] != moved)
618 >                    return moved;
619 >            }
620 >        }
621 >        return null;
622      }
623  
624      /**
625 <     * Add the specified element to this priority queue.
625 >     * Inserts item x at position k, maintaining heap invariant by
626 >     * promoting x up the tree until it is greater than or equal to
627 >     * its parent, or is the root.
628 >     *
629 >     * To simplify and speed up coercions and comparisons, the
630 >     * Comparable and Comparator versions are separated into different
631 >     * methods that are otherwise identical. (Similarly for siftDown.)
632       *
633 <     * @param element the element to add.
634 <     * @return true
293 <     * @throws ClassCastException if the specified element cannot be compared
294 <     *            with elements currently in the priority queue according
295 <     *            to the priority queue's ordering.
296 <     * @throws NullPointerException if the specified element is null.
633 >     * @param k the position to fill
634 >     * @param x the item to insert
635       */
636 <    public boolean offer(E element) {
637 <        if (element == null)
638 <            throw new NullPointerException();
639 <        modCount++;
636 >    private void siftUp(int k, E x) {
637 >        if (comparator != null)
638 >            siftUpUsingComparator(k, x, queue, comparator);
639 >        else
640 >            siftUpComparable(k, x, queue);
641 >    }
642  
643 <        // Grow backing store if necessary
644 <        if (++size == queue.length) {
645 <            E[] newQueue = new E[2 * queue.length];
646 <            System.arraycopy(queue, 0, newQueue, 0, size);
647 <            queue = newQueue;
643 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
644 >        Comparable<? super T> key = (Comparable<? super T>) x;
645 >        while (k > 0) {
646 >            int parent = (k - 1) >>> 1;
647 >            Object e = es[parent];
648 >            if (key.compareTo((T) e) >= 0)
649 >                break;
650 >            es[k] = e;
651 >            k = parent;
652          }
653 +        es[k] = key;
654 +    }
655  
656 <        queue[size] = element;
657 <        fixUp(size);
658 <        return true;
656 >    private static <T> void siftUpUsingComparator(
657 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
658 >        while (k > 0) {
659 >            int parent = (k - 1) >>> 1;
660 >            Object e = es[parent];
661 >            if (cmp.compare(x, (T) e) >= 0)
662 >                break;
663 >            es[k] = e;
664 >            k = parent;
665 >        }
666 >        es[k] = x;
667      }
668  
669      /**
670 <     * Remove all elements from the priority queue.
670 >     * Inserts item x at position k, maintaining heap invariant by
671 >     * demoting x down the tree repeatedly until it is less than or
672 >     * equal to its children or is a leaf.
673 >     *
674 >     * @param k the position to fill
675 >     * @param x the item to insert
676 >     */
677 >    private void siftDown(int k, E x) {
678 >        if (comparator != null)
679 >            siftDownUsingComparator(k, x, queue, size, comparator);
680 >        else
681 >            siftDownComparable(k, x, queue, size);
682 >    }
683 >
684 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
685 >        // assert n > 0;
686 >        Comparable<? super T> key = (Comparable<? super T>)x;
687 >        int half = n >>> 1;           // loop while a non-leaf
688 >        while (k < half) {
689 >            int child = (k << 1) + 1; // assume left child is least
690 >            Object c = es[child];
691 >            int right = child + 1;
692 >            if (right < n &&
693 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
694 >                c = es[child = right];
695 >            if (key.compareTo((T) c) <= 0)
696 >                break;
697 >            es[k] = c;
698 >            k = child;
699 >        }
700 >        es[k] = key;
701 >    }
702 >
703 >    private static <T> void siftDownUsingComparator(
704 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
705 >        // assert n > 0;
706 >        int half = n >>> 1;
707 >        while (k < half) {
708 >            int child = (k << 1) + 1;
709 >            Object c = es[child];
710 >            int right = child + 1;
711 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
712 >                c = es[child = right];
713 >            if (cmp.compare(x, (T) c) <= 0)
714 >                break;
715 >            es[k] = c;
716 >            k = child;
717 >        }
718 >        es[k] = x;
719 >    }
720 >
721 >    /**
722 >     * Establishes the heap invariant (described above) in the entire tree,
723 >     * assuming nothing about the order of the elements prior to the call.
724 >     * This classic algorithm due to Floyd (1964) is known to be O(size).
725       */
726 <    public void clear() {
727 <        modCount++;
726 >    private void heapify() {
727 >        final Object[] es = queue;
728 >        int n = size, i = (n >>> 1) - 1;
729 >        final Comparator<? super E> cmp;
730 >        if ((cmp = comparator) == null)
731 >            for (; i >= 0; i--)
732 >                siftDownComparable(i, (E) es[i], es, n);
733 >        else
734 >            for (; i >= 0; i--)
735 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
736 >    }
737 >
738 >    /**
739 >     * Returns the comparator used to order the elements in this
740 >     * queue, or {@code null} if this queue is sorted according to
741 >     * the {@linkplain Comparable natural ordering} of its elements.
742 >     *
743 >     * @return the comparator used to order this queue, or
744 >     *         {@code null} if this queue is sorted according to the
745 >     *         natural ordering of its elements
746 >     */
747 >    public Comparator<? super E> comparator() {
748 >        return comparator;
749 >    }
750 >
751 >    /**
752 >     * Saves this queue to a stream (that is, serializes it).
753 >     *
754 >     * @param s the stream
755 >     * @throws java.io.IOException if an I/O error occurs
756 >     * @serialData The length of the array backing the instance is
757 >     *             emitted (int), followed by all of its elements
758 >     *             (each an {@code Object}) in the proper order.
759 >     */
760 >    // OPENJDK @java.io.Serial
761 >    private void writeObject(java.io.ObjectOutputStream s)
762 >        throws java.io.IOException {
763 >        // Write out element count, and any hidden stuff
764 >        s.defaultWriteObject();
765  
766 <        // Null out element references to prevent memory leak
767 <        for (int i=1; i<=size; i++)
323 <            queue[i] = null;
766 >        // Write out array length, for compatibility with 1.5 version
767 >        s.writeInt(Math.max(2, size + 1));
768  
769 <        size = 0;
769 >        // Write out all elements in the "proper order".
770 >        final Object[] es = queue;
771 >        for (int i = 0, n = size; i < n; i++)
772 >            s.writeObject(es[i]);
773      }
774  
775      /**
776 <     * Removes and returns the ith element from queue.  Recall
777 <     * that queue is one-based, so 1 <= i <= size.
776 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
777 >     * (that is, deserializes it).
778       *
779 <     * XXX: Could further special-case i==size, but is it worth it?
780 <     * XXX: Could special-case i==0, but is it worth it?
779 >     * @param s the stream
780 >     * @throws ClassNotFoundException if the class of a serialized object
781 >     *         could not be found
782 >     * @throws java.io.IOException if an I/O error occurs
783       */
784 <    private E remove(int i) {
785 <        assert i <= size;
786 <        modCount++;
784 >    // OPENJDK @java.io.Serial
785 >    private void readObject(java.io.ObjectInputStream s)
786 >        throws java.io.IOException, ClassNotFoundException {
787 >        // Read in size, and any hidden stuff
788 >        s.defaultReadObject();
789  
790 <        E result = queue[i];
791 <        queue[i] = queue[size];
792 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
793 <        if (i <= size)
794 <            fixDown(i);
795 <        return result;
790 >        // Read in (and discard) array length
791 >        s.readInt();
792 >
793 >        jsr166.Platform.checkArray(s, Object[].class, size);
794 >        final Object[] es = queue = new Object[Math.max(size, 1)];
795 >
796 >        // Read in all elements.
797 >        for (int i = 0, n = size; i < n; i++)
798 >            es[i] = s.readObject();
799 >
800 >        // Elements are guaranteed to be in "proper order", but the
801 >        // spec has never explained what that might be.
802 >        heapify();
803      }
804  
805      /**
806 <     * Establishes the heap invariant (described above) assuming the heap
807 <     * satisfies the invariant except possibly for the leaf-node indexed by k
808 <     * (which may have a nextExecutionTime less than its parent's).
809 <     *
810 <     * This method functions by "promoting" queue[k] up the hierarchy
811 <     * (by swapping it with its parent) repeatedly until queue[k]
812 <     * is greater than or equal to its parent.
813 <     */
814 <    private void fixUp(int k) {
815 <        if (comparator == null) {
816 <            while (k > 1) {
817 <                int j = k >> 1;
818 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
819 <                    break;
820 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
821 <                k = j;
806 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
807 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
808 >     * queue. The spliterator does not traverse elements in any particular order
809 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
810 >     *
811 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
812 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
813 >     * Overriding implementations should document the reporting of additional
814 >     * characteristic values.
815 >     *
816 >     * @return a {@code Spliterator} over the elements in this queue
817 >     * @since 1.8
818 >     */
819 >    public final Spliterator<E> spliterator() {
820 >        return new PriorityQueueSpliterator(0, -1, 0);
821 >    }
822 >
823 >    final class PriorityQueueSpliterator implements Spliterator<E> {
824 >        private int index;            // current index, modified on advance/split
825 >        private int fence;            // -1 until first use
826 >        private int expectedModCount; // initialized when fence set
827 >
828 >        /** Creates new spliterator covering the given range. */
829 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 >            this.index = origin;
831 >            this.fence = fence;
832 >            this.expectedModCount = expectedModCount;
833 >        }
834 >
835 >        private int getFence() { // initialize fence to size on first use
836 >            int hi;
837 >            if ((hi = fence) < 0) {
838 >                expectedModCount = modCount;
839 >                hi = fence = size;
840              }
841 <        } else {
842 <            while (k > 1) {
843 <                int j = k >> 1;
844 <                if (comparator.compare(queue[j], queue[k]) <= 0)
845 <                    break;
846 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
847 <                k = j;
841 >            return hi;
842 >        }
843 >
844 >        public PriorityQueueSpliterator trySplit() {
845 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 >            return (lo >= mid) ? null :
847 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 >        }
849 >
850 >        public void forEachRemaining(Consumer<? super E> action) {
851 >            if (action == null)
852 >                throw new NullPointerException();
853 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
854 >            final Object[] es = queue;
855 >            int i, hi; E e;
856 >            for (i = index, index = hi = fence; i < hi; i++) {
857 >                if ((e = (E) es[i]) == null)
858 >                    break;      // must be CME
859 >                action.accept(e);
860 >            }
861 >            if (modCount != expectedModCount)
862 >                throw new ConcurrentModificationException();
863 >        }
864 >
865 >        public boolean tryAdvance(Consumer<? super E> action) {
866 >            if (action == null)
867 >                throw new NullPointerException();
868 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
869 >            int i;
870 >            if ((i = index) < fence) {
871 >                index = i + 1;
872 >                E e;
873 >                if ((e = (E) queue[i]) == null
874 >                    || modCount != expectedModCount)
875 >                    throw new ConcurrentModificationException();
876 >                action.accept(e);
877 >                return true;
878              }
879 +            return false;
880 +        }
881 +
882 +        public long estimateSize() {
883 +            return getFence() - index;
884 +        }
885 +
886 +        public int characteristics() {
887 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
888          }
889      }
890  
891      /**
892 <     * Establishes the heap invariant (described above) in the subtree
893 <     * rooted at k, which is assumed to satisfy the heap invariant except
894 <     * possibly for node k itself (which may be greater than its children).
895 <     *
896 <     * This method functions by "demoting" queue[k] down the hierarchy
897 <     * (by swapping it with its smaller child) repeatedly until queue[k]
898 <     * is less than or equal to its children.
899 <     */
900 <    private void fixDown(int k) {
901 <        int j;
902 <        if (comparator == null) {
903 <            while ((j = k << 1) <= size) {
904 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
905 <                    j++; // j indexes smallest kid
906 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
907 <                    break;
908 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
909 <                k = j;
910 <            }
911 <        } else {
912 <            while ((j = k << 1) <= size) {
913 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
914 <                    j++; // j indexes smallest kid
915 <                if (comparator.compare(queue[k], queue[j]) <= 0)
916 <                    break;
917 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
918 <                k = j;
919 <            }
892 >     * @throws NullPointerException {@inheritDoc}
893 >     */
894 >    public boolean removeIf(Predicate<? super E> filter) {
895 >        Objects.requireNonNull(filter);
896 >        return bulkRemove(filter);
897 >    }
898 >
899 >    /**
900 >     * @throws NullPointerException {@inheritDoc}
901 >     */
902 >    public boolean removeAll(Collection<?> c) {
903 >        Objects.requireNonNull(c);
904 >        return bulkRemove(e -> c.contains(e));
905 >    }
906 >
907 >    /**
908 >     * @throws NullPointerException {@inheritDoc}
909 >     */
910 >    public boolean retainAll(Collection<?> c) {
911 >        Objects.requireNonNull(c);
912 >        return bulkRemove(e -> !c.contains(e));
913 >    }
914 >
915 >    // A tiny bit set implementation
916 >
917 >    private static long[] nBits(int n) {
918 >        return new long[((n - 1) >> 6) + 1];
919 >    }
920 >    private static void setBit(long[] bits, int i) {
921 >        bits[i >> 6] |= 1L << i;
922 >    }
923 >    private static boolean isClear(long[] bits, int i) {
924 >        return (bits[i >> 6] & (1L << i)) == 0;
925 >    }
926 >
927 >    /** Implementation of bulk remove methods. */
928 >    private boolean bulkRemove(Predicate<? super E> filter) {
929 >        final int expectedModCount = ++modCount;
930 >        final Object[] es = queue;
931 >        final int end = size;
932 >        int i;
933 >        // Optimize for initial run of survivors
934 >        for (i = 0; i < end && !filter.test((E) es[i]); i++)
935 >            ;
936 >        if (i >= end) {
937 >            if (modCount != expectedModCount)
938 >                throw new ConcurrentModificationException();
939 >            return false;
940          }
941 +        // Tolerate predicates that reentrantly access the collection for
942 +        // read (but writers still get CME), so traverse once to find
943 +        // elements to delete, a second pass to physically expunge.
944 +        final int beg = i;
945 +        final long[] deathRow = nBits(end - beg);
946 +        deathRow[0] = 1L;   // set bit 0
947 +        for (i = beg + 1; i < end; i++)
948 +            if (filter.test((E) es[i]))
949 +                setBit(deathRow, i - beg);
950 +        if (modCount != expectedModCount)
951 +            throw new ConcurrentModificationException();
952 +        int w = beg;
953 +        for (i = beg; i < end; i++)
954 +            if (isClear(deathRow, i - beg))
955 +                es[w++] = es[i];
956 +        for (i = size = w; i < end; i++)
957 +            es[i] = null;
958 +        heapify();
959 +        return true;
960      }
961  
962      /**
963 <     * Returns the comparator associated with this priority queue, or
410 <     * <tt>null</tt> if it uses its elements' natural ordering.
411 <     *
412 <     * @return the comparator associated with this priority queue, or
413 <     *         <tt>null</tt> if it uses its elements' natural ordering.
963 >     * @throws NullPointerException {@inheritDoc}
964       */
965 <    Comparator<E> comparator() {
966 <        return comparator;
965 >    public void forEach(Consumer<? super E> action) {
966 >        Objects.requireNonNull(action);
967 >        final int expectedModCount = modCount;
968 >        final Object[] es = queue;
969 >        for (int i = 0, n = size; i < n; i++)
970 >            action.accept((E) es[i]);
971 >        if (expectedModCount != modCount)
972 >            throw new ConcurrentModificationException();
973      }
974   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines