ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.56 by jsr166, Mon Nov 28 02:35:46 2005 UTC vs.
Revision 1.133 by jsr166, Thu Oct 10 16:53:08 2019 UTC

# Line 1 | Line 1
1   /*
2 < * @(#)PriorityQueue.java       1.8 05/08/27
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31 > import jdk.internal.util.ArraysSupport;
32  
33   /**
34 < * An unbounded priority {@linkplain Queue queue} based on a priority
35 < * heap.  The elements of the priority queue are ordered according to
36 < * their {@linkplain Comparable natural ordering}, or by a {@link
37 < * Comparator} provided at queue construction time, depending on which
38 < * constructor is used.  A priority queue does not permit
39 < * <tt>null</tt> elements.  A priority queue relying on natural
40 < * ordering also does not permit insertion of non-comparable objects
41 < * (doing so may result in <tt>ClassCastException</tt>).
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42   *
43   * <p>The <em>head</em> of this queue is the <em>least</em> element
44   * with respect to the specified ordering.  If multiple elements are
45   * tied for least value, the head is one of those elements -- ties are
46 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
47 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48   * element at the head of the queue.
49   *
50   * <p>A priority queue is unbounded, but has an internal
# Line 35 | Line 57 | import java.util.*; // for javadoc (till
57   * <p>This class and its iterator implement all of the
58   * <em>optional</em> methods of the {@link Collection} and {@link
59   * Iterator} interfaces.  The Iterator provided in method {@link
60 < * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62   * the priority queue in any particular order. If you need ordered
63 < * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64   *
65 < * <p> <strong>Note that this implementation is not synchronized.</strong>
66 < * Multiple threads should not access a <tt>PriorityQueue</tt>
67 < * instance concurrently if any of the threads modifies the list
68 < * structurally. Instead, use the thread-safe {@link
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69   * java.util.concurrent.PriorityBlockingQueue} class.
70   *
71 < * <p>Implementation note: this implementation provides O(log(n)) time
72 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
73 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
74 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
75 < * constant time for the retrieval methods (<tt>peek</tt>,
76 < * <tt>element</tt>, and <tt>size</tt>).
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../guide/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81 + *
82   * @since 1.5
83 < * @version 1.8, 08/27/05
84 < * @author Josh Bloch
61 < * @param <E> the type of elements held in this collection
83 > * @author Josh Bloch, Doug Lea
84 > * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88      implements java.io.Serializable {
89  
90 +    // OPENJDK @java.io.Serial
91      private static final long serialVersionUID = -7720805057305804111L;
92  
93      private static final int DEFAULT_INITIAL_CAPACITY = 11;
# Line 75 | Line 100 | public class PriorityQueue<E> extends Ab
100       * heap and each descendant d of n, n <= d.  The element with the
101       * lowest value is in queue[0], assuming the queue is nonempty.
102       */
103 <    private transient Object[] queue;
103 >    transient Object[] queue; // non-private to simplify nested class access
104  
105      /**
106       * The number of elements in the priority queue.
107       */
108 <    private int size = 0;
108 >    int size;
109  
110      /**
111       * The comparator, or null if priority queue uses elements'
112       * natural ordering.
113       */
114 +    @SuppressWarnings("serial") // Conditionally serializable
115      private final Comparator<? super E> comparator;
116  
117      /**
118       * The number of times this priority queue has been
119       * <i>structurally modified</i>.  See AbstractList for gory details.
120       */
121 <    private transient int modCount = 0;
121 >    transient int modCount;     // non-private to simplify nested class access
122  
123      /**
124 <     * Creates a <tt>PriorityQueue</tt> with the default initial
124 >     * Creates a {@code PriorityQueue} with the default initial
125       * capacity (11) that orders its elements according to their
126       * {@linkplain Comparable natural ordering}.
127       */
# Line 104 | Line 130 | public class PriorityQueue<E> extends Ab
130      }
131  
132      /**
133 <     * Creates a <tt>PriorityQueue</tt> with the specified initial
133 >     * Creates a {@code PriorityQueue} with the specified initial
134       * capacity that orders its elements according to their
135       * {@linkplain Comparable natural ordering}.
136       *
137       * @param initialCapacity the initial capacity for this priority queue
138 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
139 <     * than 1
138 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
139 >     *         than 1
140       */
141      public PriorityQueue(int initialCapacity) {
142          this(initialCapacity, null);
143      }
144  
145      /**
146 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
146 >     * Creates a {@code PriorityQueue} with the default initial capacity and
147 >     * whose elements are ordered according to the specified comparator.
148 >     *
149 >     * @param  comparator the comparator that will be used to order this
150 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
151 >     *         natural ordering} of the elements will be used.
152 >     * @since 1.8
153 >     */
154 >    public PriorityQueue(Comparator<? super E> comparator) {
155 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
156 >    }
157 >
158 >    /**
159 >     * Creates a {@code PriorityQueue} with the specified initial capacity
160       * that orders its elements according to the specified comparator.
161       *
162       * @param  initialCapacity the initial capacity for this priority queue
163 <     * @param  comparator the comparator that will be used to order
164 <     *         this priority queue.  If <tt>null</tt>, the <i>natural
165 <     *         ordering</i> of the elements will be used.
166 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
163 >     * @param  comparator the comparator that will be used to order this
164 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
165 >     *         natural ordering} of the elements will be used.
166 >     * @throws IllegalArgumentException if {@code initialCapacity} is
167       *         less than 1
168       */
169      public PriorityQueue(int initialCapacity,
# Line 138 | Line 177 | public class PriorityQueue<E> extends Ab
177      }
178  
179      /**
180 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
181 <     * specified collection.   If the specified collection is an
182 <     * instance of a {@link java.util.SortedSet} or is another
183 <     * <tt>PriorityQueue</tt>, the priority queue will be ordered
184 <     * according to the same ordering.  Otherwise, this priority queue
185 <     * will be ordered according to the natural ordering of its elements.
180 >     * Creates a {@code PriorityQueue} containing the elements in the
181 >     * specified collection.  If the specified collection is an instance of
182 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
183 >     * priority queue will be ordered according to the same ordering.
184 >     * Otherwise, this priority queue will be ordered according to the
185 >     * {@linkplain Comparable natural ordering} of its elements.
186       *
187       * @param  c the collection whose elements are to be placed
188       *         into this priority queue
# Line 154 | Line 193 | public class PriorityQueue<E> extends Ab
193       *         of its elements are null
194       */
195      public PriorityQueue(Collection<? extends E> c) {
196 <        initFromCollection(c);
197 <        if (c instanceof SortedSet)
198 <            comparator = (Comparator<? super E>)
199 <                ((SortedSet<? extends E>)c).comparator();
200 <        else if (c instanceof PriorityQueue)
201 <            comparator = (Comparator<? super E>)
202 <                ((PriorityQueue<? extends E>)c).comparator();
196 >        if (c instanceof SortedSet<?>) {
197 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
198 >            this.comparator = (Comparator<? super E>) ss.comparator();
199 >            initElementsFromCollection(ss);
200 >        }
201 >        else if (c instanceof PriorityQueue<?>) {
202 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
203 >            this.comparator = (Comparator<? super E>) pq.comparator();
204 >            initFromPriorityQueue(pq);
205 >        }
206          else {
207 <            comparator = null;
208 <            heapify();
207 >            this.comparator = null;
208 >            initFromCollection(c);
209          }
210      }
211  
212      /**
213 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
213 >     * Creates a {@code PriorityQueue} containing the elements in the
214       * specified priority queue.  This priority queue will be
215       * ordered according to the same ordering as the given priority
216       * queue.
217       *
218       * @param  c the priority queue whose elements are to be placed
219       *         into this priority queue
220 <     * @throws ClassCastException if elements of <tt>c</tt> cannot be
221 <     *         compared to one another according to <tt>c</tt>'s
220 >     * @throws ClassCastException if elements of {@code c} cannot be
221 >     *         compared to one another according to {@code c}'s
222       *         ordering
223       * @throws NullPointerException if the specified priority queue or any
224       *         of its elements are null
225       */
226      public PriorityQueue(PriorityQueue<? extends E> c) {
227 <        comparator = (Comparator<? super E>)c.comparator();
228 <        initFromCollection(c);
227 >        this.comparator = (Comparator<? super E>) c.comparator();
228 >        initFromPriorityQueue(c);
229      }
230  
231      /**
232 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
233 <     * specified sorted set.  This priority queue will be ordered
232 >     * Creates a {@code PriorityQueue} containing the elements in the
233 >     * specified sorted set.   This priority queue will be ordered
234       * according to the same ordering as the given sorted set.
235       *
236       * @param  c the sorted set whose elements are to be placed
237 <     *         into this priority queue.
237 >     *         into this priority queue
238       * @throws ClassCastException if elements of the specified sorted
239       *         set cannot be compared to one another according to the
240       *         sorted set's ordering
# Line 200 | Line 242 | public class PriorityQueue<E> extends Ab
242       *         of its elements are null
243       */
244      public PriorityQueue(SortedSet<? extends E> c) {
245 <        comparator = (Comparator<? super E>)c.comparator();
246 <        initFromCollection(c);
245 >        this.comparator = (Comparator<? super E>) c.comparator();
246 >        initElementsFromCollection(c);
247 >    }
248 >
249 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
250 >    private static Object[] ensureNonEmpty(Object[] es) {
251 >        return (es.length > 0) ? es : new Object[1];
252 >    }
253 >
254 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
255 >        if (c.getClass() == PriorityQueue.class) {
256 >            this.queue = ensureNonEmpty(c.toArray());
257 >            this.size = c.size();
258 >        } else {
259 >            initFromCollection(c);
260 >        }
261 >    }
262 >
263 >    private void initElementsFromCollection(Collection<? extends E> c) {
264 >        Object[] es = c.toArray();
265 >        int len = es.length;
266 >        // If c.toArray incorrectly doesn't return Object[], copy it.
267 >        if (es.getClass() != Object[].class)
268 >            es = Arrays.copyOf(es, len, Object[].class);
269 >        if (len == 1 || this.comparator != null)
270 >            for (Object e : es)
271 >                if (e == null)
272 >                    throw new NullPointerException();
273 >        this.queue = ensureNonEmpty(es);
274 >        this.size = len;
275      }
276  
277      /**
278 <     * Initialize queue array with elements from the given Collection.
278 >     * Initializes queue array with elements from the given Collection.
279 >     *
280       * @param c the collection
281       */
282      private void initFromCollection(Collection<? extends E> c) {
283 <        Object[] a = c.toArray();
284 <        // If c.toArray incorrectly doesn't return Object[], copy it.
214 <        if (a.getClass() != Object[].class)
215 <            a = Arrays.copyOf(a, a.length, Object[].class);
216 <        queue = a;
217 <        size = a.length;
283 >        initElementsFromCollection(c);
284 >        heapify();
285      }
286  
287      /**
# Line 223 | Line 290 | public class PriorityQueue<E> extends Ab
290       * @param minCapacity the desired minimum capacity
291       */
292      private void grow(int minCapacity) {
293 <        if (minCapacity < 0) // overflow
227 <            throw new OutOfMemoryError();
228 <        int oldCapacity = queue.length;
293 >        int oldCapacity = queue.length;
294          // Double size if small; else grow by 50%
295 <        int newCapacity = ((oldCapacity < 64)?
296 <                           ((oldCapacity + 1) * 2):
297 <                           ((oldCapacity * 3) / 2));
298 <        if (newCapacity < minCapacity)
234 <            newCapacity = minCapacity;
295 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
296 >                minCapacity - oldCapacity, /* minimum growth */
297 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
298 >                                           /* preferred growth */);
299          queue = Arrays.copyOf(queue, newCapacity);
300      }
301  
302      /**
303       * Inserts the specified element into this priority queue.
304       *
305 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
305 >     * @return {@code true} (as specified by {@link Collection#add})
306       * @throws ClassCastException if the specified element cannot be
307       *         compared with elements currently in this priority queue
308       *         according to the priority queue's ordering
# Line 251 | Line 315 | public class PriorityQueue<E> extends Ab
315      /**
316       * Inserts the specified element into this priority queue.
317       *
318 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
318 >     * @return {@code true} (as specified by {@link Queue#offer})
319       * @throws ClassCastException if the specified element cannot be
320       *         compared with elements currently in this priority queue
321       *         according to the priority queue's ordering
# Line 264 | Line 328 | public class PriorityQueue<E> extends Ab
328          int i = size;
329          if (i >= queue.length)
330              grow(i + 1);
331 +        siftUp(i, e);
332          size = i + 1;
268        if (i == 0)
269            queue[0] = e;
270        else
271            siftUp(i, e);
333          return true;
334      }
335  
336      public E peek() {
276        if (size == 0)
277            return null;
337          return (E) queue[0];
338      }
339  
340      private int indexOf(Object o) {
341 <        if (o != null) {
342 <            for (int i = 0; i < size; i++)
343 <                if (o.equals(queue[i]))
341 >        if (o != null) {
342 >            final Object[] es = queue;
343 >            for (int i = 0, n = size; i < n; i++)
344 >                if (o.equals(es[i]))
345                      return i;
346          }
347          return -1;
# Line 289 | Line 349 | public class PriorityQueue<E> extends Ab
349  
350      /**
351       * Removes a single instance of the specified element from this queue,
352 <     * if it is present.  More formally, removes an element <tt>e</tt> such
353 <     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
354 <     * elements.  Returns true if this queue contained the specified element
355 <     * (or equivalently, if this queue changed as a result of the call).
352 >     * if it is present.  More formally, removes an element {@code e} such
353 >     * that {@code o.equals(e)}, if this queue contains one or more such
354 >     * elements.  Returns {@code true} if and only if this queue contained
355 >     * the specified element (or equivalently, if this queue changed as a
356 >     * result of the call).
357       *
358       * @param o element to be removed from this queue, if present
359 <     * @return <tt>true</tt> if this queue changed as a result of the call
359 >     * @return {@code true} if this queue changed as a result of the call
360       */
361      public boolean remove(Object o) {
362 <        int i = indexOf(o);
363 <        if (i == -1)
364 <            return false;
365 <        else {
366 <            removeAt(i);
367 <            return true;
368 <        }
362 >        int i = indexOf(o);
363 >        if (i == -1)
364 >            return false;
365 >        else {
366 >            removeAt(i);
367 >            return true;
368 >        }
369      }
370  
371      /**
372 <     * Version of remove using reference equality, not equals.
312 <     * Needed by iterator.remove
372 >     * Identity-based version for use in Itr.remove.
373       *
374       * @param o element to be removed from this queue, if present
315     * @return <tt>true</tt> if removed.
375       */
376 <    boolean removeEq(Object o) {
377 <        for (int i = 0; i < size; i++) {
378 <            if (o == queue[i]) {
376 >    void removeEq(Object o) {
377 >        final Object[] es = queue;
378 >        for (int i = 0, n = size; i < n; i++) {
379 >            if (o == es[i]) {
380                  removeAt(i);
381 <                return true;
381 >                break;
382              }
383          }
324        return false;
384      }
385  
386      /**
387 <     * Returns <tt>true</tt> if this queue contains the specified element.
388 <     * More formally, returns <tt>true</tt> if and only if this queue contains
389 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
387 >     * Returns {@code true} if this queue contains the specified element.
388 >     * More formally, returns {@code true} if and only if this queue contains
389 >     * at least one element {@code e} such that {@code o.equals(e)}.
390       *
391       * @param o object to be checked for containment in this queue
392 <     * @return <tt>true</tt> if this queue contains the specified element
392 >     * @return {@code true} if this queue contains the specified element
393       */
394      public boolean contains(Object o) {
395 <        return indexOf(o) != -1;
395 >        return indexOf(o) >= 0;
396      }
397  
398      /**
399 <     * Returns an array containing all of the elements in this queue,
399 >     * Returns an array containing all of the elements in this queue.
400       * The elements are in no particular order.
401       *
402       * <p>The returned array will be "safe" in that no references to it are
403 <     * maintained by this list.  (In other words, this method must allocate
403 >     * maintained by this queue.  (In other words, this method must allocate
404       * a new array).  The caller is thus free to modify the returned array.
405       *
406 <     * @return an array containing all of the elements in this queue.
406 >     * <p>This method acts as bridge between array-based and collection-based
407 >     * APIs.
408 >     *
409 >     * @return an array containing all of the elements in this queue
410       */
411      public Object[] toArray() {
412          return Arrays.copyOf(queue, size);
413      }
414  
415      /**
416 <     * Returns an array containing all of the elements in this queue.
417 <     * The elements are in no particular order.  The runtime type of
418 <     * the returned array is that of the specified array.  If the queue
419 <     * fits in the specified array, it is returned therein.
420 <     * Otherwise, a new array is allocated with the runtime type of
421 <     * the specified array and the size of this queue.
416 >     * Returns an array containing all of the elements in this queue; the
417 >     * runtime type of the returned array is that of the specified array.
418 >     * The returned array elements are in no particular order.
419 >     * If the queue fits in the specified array, it is returned therein.
420 >     * Otherwise, a new array is allocated with the runtime type of the
421 >     * specified array and the size of this queue.
422       *
423       * <p>If the queue fits in the specified array with room to spare
424       * (i.e., the array has more elements than the queue), the element in
425       * the array immediately following the end of the collection is set to
426 <     * <tt>null</tt>.  (This is useful in determining the length of the
427 <     * queue <i>only</i> if the caller knows that the queue does not contain
428 <     * any null elements.)
426 >     * {@code null}.
427 >     *
428 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429 >     * array-based and collection-based APIs.  Further, this method allows
430 >     * precise control over the runtime type of the output array, and may,
431 >     * under certain circumstances, be used to save allocation costs.
432 >     *
433 >     * <p>Suppose {@code x} is a queue known to contain only strings.
434 >     * The following code can be used to dump the queue into a newly
435 >     * allocated array of {@code String}:
436 >     *
437 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
438 >     *
439 >     * Note that {@code toArray(new Object[0])} is identical in function to
440 >     * {@code toArray()}.
441       *
442       * @param a the array into which the elements of the queue are to
443       *          be stored, if it is big enough; otherwise, a new array of the
444       *          same runtime type is allocated for this purpose.
445 <     * @return an array containing the elements of the queue
445 >     * @return an array containing all of the elements in this queue
446       * @throws ArrayStoreException if the runtime type of the specified array
447       *         is not a supertype of the runtime type of every element in
448       *         this queue
449       * @throws NullPointerException if the specified array is null
450       */
451      public <T> T[] toArray(T[] a) {
452 +        final int size = this.size;
453          if (a.length < size)
454              // Make a new array of a's runtime type, but my contents:
455              return (T[]) Arrays.copyOf(queue, size, a.getClass());
456 <        System.arraycopy(queue, 0, a, 0, size);
456 >        System.arraycopy(queue, 0, a, 0, size);
457          if (a.length > size)
458              a[size] = null;
459          return a;
# Line 399 | Line 474 | public class PriorityQueue<E> extends Ab
474           * Index (into queue array) of element to be returned by
475           * subsequent call to next.
476           */
477 <        private int cursor = 0;
477 >        private int cursor;
478  
479          /**
480           * Index of element returned by most recent call to next,
# Line 417 | Line 492 | public class PriorityQueue<E> extends Ab
492           * after we've completed the "normal" iteration.
493           *
494           * We expect that most iterations, even those involving removals,
495 <         * will not use need to store elements in this field.
495 >         * will not need to store elements in this field.
496           */
497 <        private ArrayDeque<E> forgetMeNot = null;
497 >        private ArrayDeque<E> forgetMeNot;
498  
499          /**
500           * Element returned by the most recent call to next iff that
501           * element was drawn from the forgetMeNot list.
502           */
503 <        private E lastRetElt = null;
503 >        private E lastRetElt;
504  
505          /**
506           * The modCount value that the iterator believes that the backing
507 <         * List should have.  If this expectation is violated, the iterator
507 >         * Queue should have.  If this expectation is violated, the iterator
508           * has detected concurrent modification.
509           */
510          private int expectedModCount = modCount;
511  
512 +        Itr() {}                        // prevent access constructor creation
513 +
514          public boolean hasNext() {
515              return cursor < size ||
516                  (forgetMeNot != null && !forgetMeNot.isEmpty());
# Line 456 | Line 533 | public class PriorityQueue<E> extends Ab
533          public void remove() {
534              if (expectedModCount != modCount)
535                  throw new ConcurrentModificationException();
459            if (lastRet == -1 && lastRetElt == null)
460                throw new IllegalStateException();
536              if (lastRet != -1) {
537                  E moved = PriorityQueue.this.removeAt(lastRet);
538                  lastRet = -1;
# Line 465 | Line 540 | public class PriorityQueue<E> extends Ab
540                      cursor--;
541                  else {
542                      if (forgetMeNot == null)
543 <                        forgetMeNot = new ArrayDeque<E>();
543 >                        forgetMeNot = new ArrayDeque<>();
544                      forgetMeNot.add(moved);
545                  }
546 <            } else {
546 >            } else if (lastRetElt != null) {
547                  PriorityQueue.this.removeEq(lastRetElt);
548                  lastRetElt = null;
549 +            } else {
550 +                throw new IllegalStateException();
551              }
552              expectedModCount = modCount;
553          }
477
554      }
555  
556      public int size() {
# Line 487 | Line 563 | public class PriorityQueue<E> extends Ab
563       */
564      public void clear() {
565          modCount++;
566 <        for (int i = 0; i < size; i++)
567 <            queue[i] = null;
566 >        final Object[] es = queue;
567 >        for (int i = 0, n = size; i < n; i++)
568 >            es[i] = null;
569          size = 0;
570      }
571  
572      public E poll() {
573 <        if (size == 0)
574 <            return null;
575 <        int s = --size;
576 <        modCount++;
577 <        E result = (E)queue[0];
578 <        E x = (E)queue[s];
579 <        queue[s] = null;
580 <        if (s != 0)
581 <            siftDown(0, x);
573 >        final Object[] es;
574 >        final E result;
575 >
576 >        if ((result = (E) ((es = queue)[0])) != null) {
577 >            modCount++;
578 >            final int n;
579 >            final E x = (E) es[(n = --size)];
580 >            es[n] = null;
581 >            if (n > 0) {
582 >                final Comparator<? super E> cmp;
583 >                if ((cmp = comparator) == null)
584 >                    siftDownComparable(0, x, es, n);
585 >                else
586 >                    siftDownUsingComparator(0, x, es, n, cmp);
587 >            }
588 >        }
589          return result;
590      }
591  
# Line 515 | Line 599 | public class PriorityQueue<E> extends Ab
599       * i.  Under these circumstances, this method returns the element
600       * that was previously at the end of the list and is now at some
601       * position before i. This fact is used by iterator.remove so as to
602 <     * avoid missing traverseing elements.
602 >     * avoid missing traversing elements.
603       */
604 <    private E removeAt(int i) {
605 <        assert i >= 0 && i < size;
604 >    E removeAt(int i) {
605 >        // assert i >= 0 && i < size;
606 >        final Object[] es = queue;
607          modCount++;
608          int s = --size;
609          if (s == i) // removed last element
610 <            queue[i] = null;
610 >            es[i] = null;
611          else {
612 <            E moved = (E) queue[s];
613 <            queue[s] = null;
612 >            E moved = (E) es[s];
613 >            es[s] = null;
614              siftDown(i, moved);
615 <            if (queue[i] == moved) {
615 >            if (es[i] == moved) {
616                  siftUp(i, moved);
617 <                if (queue[i] != moved)
617 >                if (es[i] != moved)
618                      return moved;
619              }
620          }
# Line 541 | Line 626 | public class PriorityQueue<E> extends Ab
626       * promoting x up the tree until it is greater than or equal to
627       * its parent, or is the root.
628       *
629 <     * To simplify and speed up coercions and comparisons. the
629 >     * To simplify and speed up coercions and comparisons, the
630       * Comparable and Comparator versions are separated into different
631       * methods that are otherwise identical. (Similarly for siftDown.)
632       *
# Line 550 | Line 635 | public class PriorityQueue<E> extends Ab
635       */
636      private void siftUp(int k, E x) {
637          if (comparator != null)
638 <            siftUpUsingComparator(k, x);
638 >            siftUpUsingComparator(k, x, queue, comparator);
639          else
640 <            siftUpComparable(k, x);
640 >            siftUpComparable(k, x, queue);
641      }
642  
643 <    private void siftUpComparable(int k, E x) {
644 <        Comparable<? super E> key = (Comparable<? super E>) x;
643 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
644 >        Comparable<? super T> key = (Comparable<? super T>) x;
645          while (k > 0) {
646              int parent = (k - 1) >>> 1;
647 <            Object e = queue[parent];
648 <            if (key.compareTo((E)e) >= 0)
647 >            Object e = es[parent];
648 >            if (key.compareTo((T) e) >= 0)
649                  break;
650 <            queue[k] = e;
650 >            es[k] = e;
651              k = parent;
652          }
653 <        queue[k] = key;
653 >        es[k] = key;
654      }
655  
656 <    private void siftUpUsingComparator(int k, E x) {
656 >    private static <T> void siftUpUsingComparator(
657 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
658          while (k > 0) {
659              int parent = (k - 1) >>> 1;
660 <            Object e = queue[parent];
661 <            if (comparator.compare(x, (E)e) >= 0)
660 >            Object e = es[parent];
661 >            if (cmp.compare(x, (T) e) >= 0)
662                  break;
663 <            queue[k] = e;
663 >            es[k] = e;
664              k = parent;
665          }
666 <        queue[k] = x;
666 >        es[k] = x;
667      }
668  
669      /**
# Line 590 | Line 676 | public class PriorityQueue<E> extends Ab
676       */
677      private void siftDown(int k, E x) {
678          if (comparator != null)
679 <            siftDownUsingComparator(k, x);
679 >            siftDownUsingComparator(k, x, queue, size, comparator);
680          else
681 <            siftDownComparable(k, x);
681 >            siftDownComparable(k, x, queue, size);
682      }
683  
684 <    private void siftDownComparable(int k, E x) {
685 <        Comparable<? super E> key = (Comparable<? super E>)x;
686 <        int half = size >>> 1;        // loop while a non-leaf
684 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
685 >        // assert n > 0;
686 >        Comparable<? super T> key = (Comparable<? super T>)x;
687 >        int half = n >>> 1;           // loop while a non-leaf
688          while (k < half) {
689              int child = (k << 1) + 1; // assume left child is least
690 <            Object c = queue[child];
690 >            Object c = es[child];
691              int right = child + 1;
692 <            if (right < size &&
693 <                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
694 <                c = queue[child = right];
695 <            if (key.compareTo((E)c) <= 0)
692 >            if (right < n &&
693 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
694 >                c = es[child = right];
695 >            if (key.compareTo((T) c) <= 0)
696                  break;
697 <            queue[k] = c;
697 >            es[k] = c;
698              k = child;
699          }
700 <        queue[k] = key;
700 >        es[k] = key;
701      }
702  
703 <    private void siftDownUsingComparator(int k, E x) {
704 <        int half = size >>> 1;
703 >    private static <T> void siftDownUsingComparator(
704 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
705 >        // assert n > 0;
706 >        int half = n >>> 1;
707          while (k < half) {
708              int child = (k << 1) + 1;
709 <            Object c = queue[child];
709 >            Object c = es[child];
710              int right = child + 1;
711 <            if (right < size &&
712 <                comparator.compare((E)c, (E)queue[right]) > 0)
713 <                c = queue[child = right];
625 <            if (comparator.compare(x, (E)c) <= 0)
711 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
712 >                c = es[child = right];
713 >            if (cmp.compare(x, (T) c) <= 0)
714                  break;
715 <            queue[k] = c;
715 >            es[k] = c;
716              k = child;
717          }
718 <        queue[k] = x;
718 >        es[k] = x;
719      }
720  
721      /**
722       * Establishes the heap invariant (described above) in the entire tree,
723       * assuming nothing about the order of the elements prior to the call.
724 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
725       */
726      private void heapify() {
727 <        for (int i = (size >>> 1) - 1; i >= 0; i--)
728 <            siftDown(i, (E)queue[i]);
727 >        final Object[] es = queue;
728 >        int n = size, i = (n >>> 1) - 1;
729 >        final Comparator<? super E> cmp;
730 >        if ((cmp = comparator) == null)
731 >            for (; i >= 0; i--)
732 >                siftDownComparable(i, (E) es[i], es, n);
733 >        else
734 >            for (; i >= 0; i--)
735 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
736      }
737  
738      /**
739       * Returns the comparator used to order the elements in this
740 <     * queue, or <tt>null</tt> if this queue is sorted according to
740 >     * queue, or {@code null} if this queue is sorted according to
741       * the {@linkplain Comparable natural ordering} of its elements.
742       *
743       * @return the comparator used to order this queue, or
744 <     *         <tt>null</tt> if this queue is sorted according to the
745 <     *         natural ordering of its elements.
744 >     *         {@code null} if this queue is sorted according to the
745 >     *         natural ordering of its elements
746       */
747      public Comparator<? super E> comparator() {
748          return comparator;
749      }
750  
751      /**
752 <     * Save the state of the instance to a stream (that
657 <     * is, serialize it).
752 >     * Saves this queue to a stream (that is, serializes it).
753       *
659     * @serialData The length of the array backing the instance is
660     * emitted (int), followed by all of its elements (each an
661     * <tt>Object</tt>) in the proper order.
754       * @param s the stream
755 +     * @throws java.io.IOException if an I/O error occurs
756 +     * @serialData The length of the array backing the instance is
757 +     *             emitted (int), followed by all of its elements
758 +     *             (each an {@code Object}) in the proper order.
759       */
760 +    // OPENJDK @java.io.Serial
761      private void writeObject(java.io.ObjectOutputStream s)
762 <        throws java.io.IOException{
762 >        throws java.io.IOException {
763          // Write out element count, and any hidden stuff
764          s.defaultWriteObject();
765  
766 <        // Write out array length
767 <        // For compatibility with 1.5 version, must be at least 2.
671 <        s.writeInt(Math.max(2, queue.length));
766 >        // Write out array length, for compatibility with 1.5 version
767 >        s.writeInt(Math.max(2, size + 1));
768  
769 <        // Write out all elements in the proper order.
770 <        for (int i=0; i<size; i++)
771 <            s.writeObject(queue[i]);
769 >        // Write out all elements in the "proper order".
770 >        final Object[] es = queue;
771 >        for (int i = 0, n = size; i < n; i++)
772 >            s.writeObject(es[i]);
773      }
774  
775      /**
776 <     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
777 <     * (that is, deserialize it).
776 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
777 >     * (that is, deserializes it).
778 >     *
779       * @param s the stream
780 +     * @throws ClassNotFoundException if the class of a serialized object
781 +     *         could not be found
782 +     * @throws java.io.IOException if an I/O error occurs
783       */
784 +    // OPENJDK @java.io.Serial
785      private void readObject(java.io.ObjectInputStream s)
786          throws java.io.IOException, ClassNotFoundException {
787          // Read in size, and any hidden stuff
788          s.defaultReadObject();
789  
790 <        // Read in array length and allocate array
791 <        int arrayLength = s.readInt();
792 <        queue = new Object[arrayLength];
793 <
794 <        // Read in all elements in the proper order.
795 <        for (int i=0; i<size; i++)
796 <            queue[i] = (E) s.readObject();
790 >        // Read in (and discard) array length
791 >        s.readInt();
792 >
793 >        jsr166.Platform.checkArray(s, Object[].class, size);
794 >        final Object[] es = queue = new Object[Math.max(size, 1)];
795 >
796 >        // Read in all elements.
797 >        for (int i = 0, n = size; i < n; i++)
798 >            es[i] = s.readObject();
799 >
800 >        // Elements are guaranteed to be in "proper order", but the
801 >        // spec has never explained what that might be.
802 >        heapify();
803 >    }
804 >
805 >    /**
806 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
807 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
808 >     * queue. The spliterator does not traverse elements in any particular order
809 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
810 >     *
811 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
812 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
813 >     * Overriding implementations should document the reporting of additional
814 >     * characteristic values.
815 >     *
816 >     * @return a {@code Spliterator} over the elements in this queue
817 >     * @since 1.8
818 >     */
819 >    public final Spliterator<E> spliterator() {
820 >        return new PriorityQueueSpliterator(0, -1, 0);
821 >    }
822 >
823 >    final class PriorityQueueSpliterator implements Spliterator<E> {
824 >        private int index;            // current index, modified on advance/split
825 >        private int fence;            // -1 until first use
826 >        private int expectedModCount; // initialized when fence set
827 >
828 >        /** Creates new spliterator covering the given range. */
829 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 >            this.index = origin;
831 >            this.fence = fence;
832 >            this.expectedModCount = expectedModCount;
833 >        }
834 >
835 >        private int getFence() { // initialize fence to size on first use
836 >            int hi;
837 >            if ((hi = fence) < 0) {
838 >                expectedModCount = modCount;
839 >                hi = fence = size;
840 >            }
841 >            return hi;
842 >        }
843 >
844 >        public PriorityQueueSpliterator trySplit() {
845 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 >            return (lo >= mid) ? null :
847 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 >        }
849 >
850 >        public void forEachRemaining(Consumer<? super E> action) {
851 >            if (action == null)
852 >                throw new NullPointerException();
853 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
854 >            final Object[] es = queue;
855 >            int i, hi; E e;
856 >            for (i = index, index = hi = fence; i < hi; i++) {
857 >                if ((e = (E) es[i]) == null)
858 >                    break;      // must be CME
859 >                action.accept(e);
860 >            }
861 >            if (modCount != expectedModCount)
862 >                throw new ConcurrentModificationException();
863 >        }
864 >
865 >        public boolean tryAdvance(Consumer<? super E> action) {
866 >            if (action == null)
867 >                throw new NullPointerException();
868 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
869 >            int i;
870 >            if ((i = index) < fence) {
871 >                index = i + 1;
872 >                E e;
873 >                if ((e = (E) queue[i]) == null
874 >                    || modCount != expectedModCount)
875 >                    throw new ConcurrentModificationException();
876 >                action.accept(e);
877 >                return true;
878 >            }
879 >            return false;
880 >        }
881 >
882 >        public long estimateSize() {
883 >            return getFence() - index;
884 >        }
885 >
886 >        public int characteristics() {
887 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
888 >        }
889      }
890  
891 +    /**
892 +     * @throws NullPointerException {@inheritDoc}
893 +     */
894 +    public boolean removeIf(Predicate<? super E> filter) {
895 +        Objects.requireNonNull(filter);
896 +        return bulkRemove(filter);
897 +    }
898 +
899 +    /**
900 +     * @throws NullPointerException {@inheritDoc}
901 +     */
902 +    public boolean removeAll(Collection<?> c) {
903 +        Objects.requireNonNull(c);
904 +        return bulkRemove(e -> c.contains(e));
905 +    }
906 +
907 +    /**
908 +     * @throws NullPointerException {@inheritDoc}
909 +     */
910 +    public boolean retainAll(Collection<?> c) {
911 +        Objects.requireNonNull(c);
912 +        return bulkRemove(e -> !c.contains(e));
913 +    }
914 +
915 +    // A tiny bit set implementation
916 +
917 +    private static long[] nBits(int n) {
918 +        return new long[((n - 1) >> 6) + 1];
919 +    }
920 +    private static void setBit(long[] bits, int i) {
921 +        bits[i >> 6] |= 1L << i;
922 +    }
923 +    private static boolean isClear(long[] bits, int i) {
924 +        return (bits[i >> 6] & (1L << i)) == 0;
925 +    }
926 +
927 +    /** Implementation of bulk remove methods. */
928 +    private boolean bulkRemove(Predicate<? super E> filter) {
929 +        final int expectedModCount = ++modCount;
930 +        final Object[] es = queue;
931 +        final int end = size;
932 +        int i;
933 +        // Optimize for initial run of survivors
934 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
935 +            ;
936 +        if (i >= end) {
937 +            if (modCount != expectedModCount)
938 +                throw new ConcurrentModificationException();
939 +            return false;
940 +        }
941 +        // Tolerate predicates that reentrantly access the collection for
942 +        // read (but writers still get CME), so traverse once to find
943 +        // elements to delete, a second pass to physically expunge.
944 +        final int beg = i;
945 +        final long[] deathRow = nBits(end - beg);
946 +        deathRow[0] = 1L;   // set bit 0
947 +        for (i = beg + 1; i < end; i++)
948 +            if (filter.test((E) es[i]))
949 +                setBit(deathRow, i - beg);
950 +        if (modCount != expectedModCount)
951 +            throw new ConcurrentModificationException();
952 +        int w = beg;
953 +        for (i = beg; i < end; i++)
954 +            if (isClear(deathRow, i - beg))
955 +                es[w++] = es[i];
956 +        for (i = size = w; i < end; i++)
957 +            es[i] = null;
958 +        heapify();
959 +        return true;
960 +    }
961 +
962 +    /**
963 +     * @throws NullPointerException {@inheritDoc}
964 +     */
965 +    public void forEach(Consumer<? super E> action) {
966 +        Objects.requireNonNull(action);
967 +        final int expectedModCount = modCount;
968 +        final Object[] es = queue;
969 +        for (int i = 0, n = size; i < n; i++)
970 +            action.accept((E) es[i]);
971 +        if (expectedModCount != modCount)
972 +            throw new ConcurrentModificationException();
973 +    }
974   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines