ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.88 by dl, Fri Feb 1 16:23:04 2013 UTC vs.
Revision 1.133 by jsr166, Thu Oct 10 16:53:08 2019 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3   * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5   * This code is free software; you can redistribute it and/or modify it
# Line 24 | Line 24
24   */
25  
26   package java.util;
27 < import java.util.stream.Stream;
28 < import java.util.Spliterator;
29 < import java.util.stream.Streams;
27 >
28   import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + // OPENJDK import jdk.internal.access.SharedSecrets;
31 + import jdk.internal.util.ArraysSupport;
32  
33   /**
34   * An unbounded priority {@linkplain Queue queue} based on a priority heap.
# Line 56 | Line 57 | import java.util.function.Consumer;
57   * <p>This class and its iterator implement all of the
58   * <em>optional</em> methods of the {@link Collection} and {@link
59   * Iterator} interfaces.  The Iterator provided in method {@link
60 < * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62   * the priority queue in any particular order. If you need ordered
63   * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64   *
# Line 67 | Line 69 | import java.util.function.Consumer;
69   * java.util.concurrent.PriorityBlockingQueue} class.
70   *
71   * <p>Implementation note: this implementation provides
72 < * O(log(n)) time for the enqueing and dequeing methods
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73   * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74   * linear time for the {@code remove(Object)} and {@code contains(Object)}
75   * methods; and constant time for the retrieval methods
76   * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81   *
82   * @since 1.5
83   * @author Josh Bloch, Doug Lea
84 < * @param <E> the type of elements held in this collection
84 > * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88      implements java.io.Serializable {
89  
90 +    // OPENJDK @java.io.Serial
91      private static final long serialVersionUID = -7720805057305804111L;
92  
93      private static final int DEFAULT_INITIAL_CAPACITY = 11;
# Line 101 | Line 105 | public class PriorityQueue<E> extends Ab
105      /**
106       * The number of elements in the priority queue.
107       */
108 <    private int size = 0;
108 >    int size;
109  
110      /**
111       * The comparator, or null if priority queue uses elements'
112       * natural ordering.
113       */
114 +    @SuppressWarnings("serial") // Conditionally serializable
115      private final Comparator<? super E> comparator;
116  
117      /**
118       * The number of times this priority queue has been
119       * <i>structurally modified</i>.  See AbstractList for gory details.
120       */
121 <    transient int modCount = 0; // non-private to simplify nested class access
121 >    transient int modCount;     // non-private to simplify nested class access
122  
123      /**
124       * Creates a {@code PriorityQueue} with the default initial
# Line 138 | Line 143 | public class PriorityQueue<E> extends Ab
143      }
144  
145      /**
146 +     * Creates a {@code PriorityQueue} with the default initial capacity and
147 +     * whose elements are ordered according to the specified comparator.
148 +     *
149 +     * @param  comparator the comparator that will be used to order this
150 +     *         priority queue.  If {@code null}, the {@linkplain Comparable
151 +     *         natural ordering} of the elements will be used.
152 +     * @since 1.8
153 +     */
154 +    public PriorityQueue(Comparator<? super E> comparator) {
155 +        this(DEFAULT_INITIAL_CAPACITY, comparator);
156 +    }
157 +
158 +    /**
159       * Creates a {@code PriorityQueue} with the specified initial capacity
160       * that orders its elements according to the specified comparator.
161       *
# Line 174 | Line 192 | public class PriorityQueue<E> extends Ab
192       * @throws NullPointerException if the specified collection or any
193       *         of its elements are null
194       */
177    @SuppressWarnings("unchecked")
195      public PriorityQueue(Collection<? extends E> c) {
196          if (c instanceof SortedSet<?>) {
197              SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
# Line 206 | Line 223 | public class PriorityQueue<E> extends Ab
223       * @throws NullPointerException if the specified priority queue or any
224       *         of its elements are null
225       */
209    @SuppressWarnings("unchecked")
226      public PriorityQueue(PriorityQueue<? extends E> c) {
227          this.comparator = (Comparator<? super E>) c.comparator();
228          initFromPriorityQueue(c);
# Line 225 | Line 241 | public class PriorityQueue<E> extends Ab
241       * @throws NullPointerException if the specified sorted set or any
242       *         of its elements are null
243       */
228    @SuppressWarnings("unchecked")
244      public PriorityQueue(SortedSet<? extends E> c) {
245          this.comparator = (Comparator<? super E>) c.comparator();
246          initElementsFromCollection(c);
247      }
248  
249 +    /** Ensures that queue[0] exists, helping peek() and poll(). */
250 +    private static Object[] ensureNonEmpty(Object[] es) {
251 +        return (es.length > 0) ? es : new Object[1];
252 +    }
253 +
254      private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
255          if (c.getClass() == PriorityQueue.class) {
256 <            this.queue = c.toArray();
256 >            this.queue = ensureNonEmpty(c.toArray());
257              this.size = c.size();
258          } else {
259              initFromCollection(c);
# Line 241 | Line 261 | public class PriorityQueue<E> extends Ab
261      }
262  
263      private void initElementsFromCollection(Collection<? extends E> c) {
264 <        Object[] a = c.toArray();
264 >        Object[] es = c.toArray();
265 >        int len = es.length;
266          // If c.toArray incorrectly doesn't return Object[], copy it.
267 <        if (a.getClass() != Object[].class)
268 <            a = Arrays.copyOf(a, a.length, Object[].class);
248 <        int len = a.length;
267 >        if (es.getClass() != Object[].class)
268 >            es = Arrays.copyOf(es, len, Object[].class);
269          if (len == 1 || this.comparator != null)
270 <            for (int i = 0; i < len; i++)
271 <                if (a[i] == null)
270 >            for (Object e : es)
271 >                if (e == null)
272                      throw new NullPointerException();
273 <        this.queue = a;
274 <        this.size = a.length;
273 >        this.queue = ensureNonEmpty(es);
274 >        this.size = len;
275      }
276  
277      /**
# Line 265 | Line 285 | public class PriorityQueue<E> extends Ab
285      }
286  
287      /**
268     * The maximum size of array to allocate.
269     * Some VMs reserve some header words in an array.
270     * Attempts to allocate larger arrays may result in
271     * OutOfMemoryError: Requested array size exceeds VM limit
272     */
273    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
274
275    /**
288       * Increases the capacity of the array.
289       *
290       * @param minCapacity the desired minimum capacity
# Line 280 | Line 292 | public class PriorityQueue<E> extends Ab
292      private void grow(int minCapacity) {
293          int oldCapacity = queue.length;
294          // Double size if small; else grow by 50%
295 <        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
296 <                                         (oldCapacity + 2) :
297 <                                         (oldCapacity >> 1));
298 <        // overflow-conscious code
287 <        if (newCapacity - MAX_ARRAY_SIZE > 0)
288 <            newCapacity = hugeCapacity(minCapacity);
295 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
296 >                minCapacity - oldCapacity, /* minimum growth */
297 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
298 >                                           /* preferred growth */);
299          queue = Arrays.copyOf(queue, newCapacity);
300      }
301  
292    private static int hugeCapacity(int minCapacity) {
293        if (minCapacity < 0) // overflow
294            throw new OutOfMemoryError();
295        return (minCapacity > MAX_ARRAY_SIZE) ?
296            Integer.MAX_VALUE :
297            MAX_ARRAY_SIZE;
298    }
299
302      /**
303       * Inserts the specified element into this priority queue.
304       *
# Line 326 | Line 328 | public class PriorityQueue<E> extends Ab
328          int i = size;
329          if (i >= queue.length)
330              grow(i + 1);
331 +        siftUp(i, e);
332          size = i + 1;
330        if (i == 0)
331            queue[0] = e;
332        else
333            siftUp(i, e);
333          return true;
334      }
335  
337    @SuppressWarnings("unchecked")
336      public E peek() {
337 <        return (size == 0) ? null : (E) queue[0];
337 >        return (E) queue[0];
338      }
339  
340      private int indexOf(Object o) {
341          if (o != null) {
342 <            for (int i = 0; i < size; i++)
343 <                if (o.equals(queue[i]))
342 >            final Object[] es = queue;
343 >            for (int i = 0, n = size; i < n; i++)
344 >                if (o.equals(es[i]))
345                      return i;
346          }
347          return -1;
# Line 370 | Line 369 | public class PriorityQueue<E> extends Ab
369      }
370  
371      /**
372 <     * Version of remove using reference equality, not equals.
374 <     * Needed by iterator.remove.
372 >     * Identity-based version for use in Itr.remove.
373       *
374       * @param o element to be removed from this queue, if present
377     * @return {@code true} if removed
375       */
376 <    boolean removeEq(Object o) {
377 <        for (int i = 0; i < size; i++) {
378 <            if (o == queue[i]) {
376 >    void removeEq(Object o) {
377 >        final Object[] es = queue;
378 >        for (int i = 0, n = size; i < n; i++) {
379 >            if (o == es[i]) {
380                  removeAt(i);
381 <                return true;
381 >                break;
382              }
383          }
386        return false;
384      }
385  
386      /**
# Line 395 | Line 392 | public class PriorityQueue<E> extends Ab
392       * @return {@code true} if this queue contains the specified element
393       */
394      public boolean contains(Object o) {
395 <        return indexOf(o) != -1;
395 >        return indexOf(o) >= 0;
396      }
397  
398      /**
# Line 437 | Line 434 | public class PriorityQueue<E> extends Ab
434       * The following code can be used to dump the queue into a newly
435       * allocated array of {@code String}:
436       *
437 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
437 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
438       *
439       * Note that {@code toArray(new Object[0])} is identical in function to
440       * {@code toArray()}.
# Line 451 | Line 448 | public class PriorityQueue<E> extends Ab
448       *         this queue
449       * @throws NullPointerException if the specified array is null
450       */
454    @SuppressWarnings("unchecked")
451      public <T> T[] toArray(T[] a) {
452          final int size = this.size;
453          if (a.length < size)
# Line 478 | Line 474 | public class PriorityQueue<E> extends Ab
474           * Index (into queue array) of element to be returned by
475           * subsequent call to next.
476           */
477 <        private int cursor = 0;
477 >        private int cursor;
478  
479          /**
480           * Index of element returned by most recent call to next,
# Line 498 | Line 494 | public class PriorityQueue<E> extends Ab
494           * We expect that most iterations, even those involving removals,
495           * will not need to store elements in this field.
496           */
497 <        private ArrayDeque<E> forgetMeNot = null;
497 >        private ArrayDeque<E> forgetMeNot;
498  
499          /**
500           * Element returned by the most recent call to next iff that
501           * element was drawn from the forgetMeNot list.
502           */
503 <        private E lastRetElt = null;
503 >        private E lastRetElt;
504  
505          /**
506           * The modCount value that the iterator believes that the backing
# Line 513 | Line 509 | public class PriorityQueue<E> extends Ab
509           */
510          private int expectedModCount = modCount;
511  
512 +        Itr() {}                        // prevent access constructor creation
513 +
514          public boolean hasNext() {
515              return cursor < size ||
516                  (forgetMeNot != null && !forgetMeNot.isEmpty());
517          }
518  
521        @SuppressWarnings("unchecked")
519          public E next() {
520              if (expectedModCount != modCount)
521                  throw new ConcurrentModificationException();
# Line 543 | Line 540 | public class PriorityQueue<E> extends Ab
540                      cursor--;
541                  else {
542                      if (forgetMeNot == null)
543 <                        forgetMeNot = new ArrayDeque<E>();
543 >                        forgetMeNot = new ArrayDeque<>();
544                      forgetMeNot.add(moved);
545                  }
546              } else if (lastRetElt != null) {
# Line 566 | Line 563 | public class PriorityQueue<E> extends Ab
563       */
564      public void clear() {
565          modCount++;
566 <        for (int i = 0; i < size; i++)
567 <            queue[i] = null;
566 >        final Object[] es = queue;
567 >        for (int i = 0, n = size; i < n; i++)
568 >            es[i] = null;
569          size = 0;
570      }
571  
574    @SuppressWarnings("unchecked")
572      public E poll() {
573 <        if (size == 0)
574 <            return null;
575 <        int s = --size;
576 <        modCount++;
577 <        E result = (E) queue[0];
578 <        E x = (E) queue[s];
579 <        queue[s] = null;
580 <        if (s != 0)
581 <            siftDown(0, x);
573 >        final Object[] es;
574 >        final E result;
575 >
576 >        if ((result = (E) ((es = queue)[0])) != null) {
577 >            modCount++;
578 >            final int n;
579 >            final E x = (E) es[(n = --size)];
580 >            es[n] = null;
581 >            if (n > 0) {
582 >                final Comparator<? super E> cmp;
583 >                if ((cmp = comparator) == null)
584 >                    siftDownComparable(0, x, es, n);
585 >                else
586 >                    siftDownUsingComparator(0, x, es, n, cmp);
587 >            }
588 >        }
589          return result;
590      }
591  
# Line 597 | Line 601 | public class PriorityQueue<E> extends Ab
601       * position before i. This fact is used by iterator.remove so as to
602       * avoid missing traversing elements.
603       */
604 <    @SuppressWarnings("unchecked")
601 <    private E removeAt(int i) {
604 >    E removeAt(int i) {
605          // assert i >= 0 && i < size;
606 +        final Object[] es = queue;
607          modCount++;
608          int s = --size;
609          if (s == i) // removed last element
610 <            queue[i] = null;
610 >            es[i] = null;
611          else {
612 <            E moved = (E) queue[s];
613 <            queue[s] = null;
612 >            E moved = (E) es[s];
613 >            es[s] = null;
614              siftDown(i, moved);
615 <            if (queue[i] == moved) {
615 >            if (es[i] == moved) {
616                  siftUp(i, moved);
617 <                if (queue[i] != moved)
617 >                if (es[i] != moved)
618                      return moved;
619              }
620          }
# Line 622 | Line 626 | public class PriorityQueue<E> extends Ab
626       * promoting x up the tree until it is greater than or equal to
627       * its parent, or is the root.
628       *
629 <     * To simplify and speed up coercions and comparisons. the
629 >     * To simplify and speed up coercions and comparisons, the
630       * Comparable and Comparator versions are separated into different
631       * methods that are otherwise identical. (Similarly for siftDown.)
632       *
# Line 631 | Line 635 | public class PriorityQueue<E> extends Ab
635       */
636      private void siftUp(int k, E x) {
637          if (comparator != null)
638 <            siftUpUsingComparator(k, x);
638 >            siftUpUsingComparator(k, x, queue, comparator);
639          else
640 <            siftUpComparable(k, x);
640 >            siftUpComparable(k, x, queue);
641      }
642  
643 <    @SuppressWarnings("unchecked")
644 <    private void siftUpComparable(int k, E x) {
641 <        Comparable<? super E> key = (Comparable<? super E>) x;
643 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
644 >        Comparable<? super T> key = (Comparable<? super T>) x;
645          while (k > 0) {
646              int parent = (k - 1) >>> 1;
647 <            Object e = queue[parent];
648 <            if (key.compareTo((E) e) >= 0)
647 >            Object e = es[parent];
648 >            if (key.compareTo((T) e) >= 0)
649                  break;
650 <            queue[k] = e;
650 >            es[k] = e;
651              k = parent;
652          }
653 <        queue[k] = key;
653 >        es[k] = key;
654      }
655  
656 <    @SuppressWarnings("unchecked")
657 <    private void siftUpUsingComparator(int k, E x) {
656 >    private static <T> void siftUpUsingComparator(
657 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
658          while (k > 0) {
659              int parent = (k - 1) >>> 1;
660 <            Object e = queue[parent];
661 <            if (comparator.compare(x, (E) e) >= 0)
660 >            Object e = es[parent];
661 >            if (cmp.compare(x, (T) e) >= 0)
662                  break;
663 <            queue[k] = e;
663 >            es[k] = e;
664              k = parent;
665          }
666 <        queue[k] = x;
666 >        es[k] = x;
667      }
668  
669      /**
# Line 673 | Line 676 | public class PriorityQueue<E> extends Ab
676       */
677      private void siftDown(int k, E x) {
678          if (comparator != null)
679 <            siftDownUsingComparator(k, x);
679 >            siftDownUsingComparator(k, x, queue, size, comparator);
680          else
681 <            siftDownComparable(k, x);
681 >            siftDownComparable(k, x, queue, size);
682      }
683  
684 <    @SuppressWarnings("unchecked")
685 <    private void siftDownComparable(int k, E x) {
686 <        Comparable<? super E> key = (Comparable<? super E>)x;
687 <        int half = size >>> 1;        // loop while a non-leaf
684 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
685 >        // assert n > 0;
686 >        Comparable<? super T> key = (Comparable<? super T>)x;
687 >        int half = n >>> 1;           // loop while a non-leaf
688          while (k < half) {
689              int child = (k << 1) + 1; // assume left child is least
690 <            Object c = queue[child];
690 >            Object c = es[child];
691              int right = child + 1;
692 <            if (right < size &&
693 <                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
694 <                c = queue[child = right];
695 <            if (key.compareTo((E) c) <= 0)
692 >            if (right < n &&
693 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
694 >                c = es[child = right];
695 >            if (key.compareTo((T) c) <= 0)
696                  break;
697 <            queue[k] = c;
697 >            es[k] = c;
698              k = child;
699          }
700 <        queue[k] = key;
700 >        es[k] = key;
701      }
702  
703 <    @SuppressWarnings("unchecked")
704 <    private void siftDownUsingComparator(int k, E x) {
705 <        int half = size >>> 1;
703 >    private static <T> void siftDownUsingComparator(
704 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
705 >        // assert n > 0;
706 >        int half = n >>> 1;
707          while (k < half) {
708              int child = (k << 1) + 1;
709 <            Object c = queue[child];
709 >            Object c = es[child];
710              int right = child + 1;
711 <            if (right < size &&
712 <                comparator.compare((E) c, (E) queue[right]) > 0)
713 <                c = queue[child = right];
710 <            if (comparator.compare(x, (E) c) <= 0)
711 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
712 >                c = es[child = right];
713 >            if (cmp.compare(x, (T) c) <= 0)
714                  break;
715 <            queue[k] = c;
715 >            es[k] = c;
716              k = child;
717          }
718 <        queue[k] = x;
718 >        es[k] = x;
719      }
720  
721      /**
722       * Establishes the heap invariant (described above) in the entire tree,
723       * assuming nothing about the order of the elements prior to the call.
724 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
725       */
722    @SuppressWarnings("unchecked")
726      private void heapify() {
727 <        for (int i = (size >>> 1) - 1; i >= 0; i--)
728 <            siftDown(i, (E) queue[i]);
727 >        final Object[] es = queue;
728 >        int n = size, i = (n >>> 1) - 1;
729 >        final Comparator<? super E> cmp;
730 >        if ((cmp = comparator) == null)
731 >            for (; i >= 0; i--)
732 >                siftDownComparable(i, (E) es[i], es, n);
733 >        else
734 >            for (; i >= 0; i--)
735 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
736      }
737  
738      /**
# Line 741 | Line 751 | public class PriorityQueue<E> extends Ab
751      /**
752       * Saves this queue to a stream (that is, serializes it).
753       *
754 +     * @param s the stream
755 +     * @throws java.io.IOException if an I/O error occurs
756       * @serialData The length of the array backing the instance is
757       *             emitted (int), followed by all of its elements
758       *             (each an {@code Object}) in the proper order.
747     * @param s the stream
759       */
760 +    // OPENJDK @java.io.Serial
761      private void writeObject(java.io.ObjectOutputStream s)
762          throws java.io.IOException {
763          // Write out element count, and any hidden stuff
# Line 755 | Line 767 | public class PriorityQueue<E> extends Ab
767          s.writeInt(Math.max(2, size + 1));
768  
769          // Write out all elements in the "proper order".
770 <        for (int i = 0; i < size; i++)
771 <            s.writeObject(queue[i]);
770 >        final Object[] es = queue;
771 >        for (int i = 0, n = size; i < n; i++)
772 >            s.writeObject(es[i]);
773      }
774  
775      /**
# Line 764 | Line 777 | public class PriorityQueue<E> extends Ab
777       * (that is, deserializes it).
778       *
779       * @param s the stream
780 +     * @throws ClassNotFoundException if the class of a serialized object
781 +     *         could not be found
782 +     * @throws java.io.IOException if an I/O error occurs
783       */
784 +    // OPENJDK @java.io.Serial
785      private void readObject(java.io.ObjectInputStream s)
786          throws java.io.IOException, ClassNotFoundException {
787          // Read in size, and any hidden stuff
# Line 773 | Line 790 | public class PriorityQueue<E> extends Ab
790          // Read in (and discard) array length
791          s.readInt();
792  
793 <        queue = new Object[size];
793 >        jsr166.Platform.checkArray(s, Object[].class, size);
794 >        final Object[] es = queue = new Object[Math.max(size, 1)];
795  
796          // Read in all elements.
797 <        for (int i = 0; i < size; i++)
798 <            queue[i] = s.readObject();
797 >        for (int i = 0, n = size; i < n; i++)
798 >            es[i] = s.readObject();
799  
800          // Elements are guaranteed to be in "proper order", but the
801          // spec has never explained what that might be.
802          heapify();
803      }
804  
805 <    // wrapping constructor in method avoids transient javac problems
806 <    final PriorityQueueSpliterator<E> spliterator(int origin, int fence,
807 <                                                  int expectedModCount) {
808 <        return new PriorityQueueSpliterator<E>(this, origin, fence,
809 <                                               expectedModCount);
810 <    }
811 <
812 <    public Stream<E> stream() {
813 <        int flags = Streams.STREAM_IS_SIZED;
814 <        return Streams.stream
815 <            (() -> spliterator(0, size, modCount), flags);
816 <    }
817 <    public Stream<E> parallelStream() {
818 <        int flags = Streams.STREAM_IS_SIZED;
819 <        return Streams.parallelStream
820 <            (() -> spliterator(0, size, modCount), flags);
821 <    }
822 <
823 <    /** Index-based split-by-two Spliterator */
824 <    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
825 <        private final PriorityQueue<E> pq;
826 <        private int index;           // current index, modified on advance/split
827 <        private final int fence;     // one past last index
828 <        private final int expectedModCount; // for comodification checks
829 <
830 <        /** Create new spliterator covering the given  range */
831 <        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
814 <                             int expectedModCount) {
815 <            this.pq = pq; this.index = origin; this.fence = fence;
805 >    /**
806 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
807 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
808 >     * queue. The spliterator does not traverse elements in any particular order
809 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
810 >     *
811 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
812 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
813 >     * Overriding implementations should document the reporting of additional
814 >     * characteristic values.
815 >     *
816 >     * @return a {@code Spliterator} over the elements in this queue
817 >     * @since 1.8
818 >     */
819 >    public final Spliterator<E> spliterator() {
820 >        return new PriorityQueueSpliterator(0, -1, 0);
821 >    }
822 >
823 >    final class PriorityQueueSpliterator implements Spliterator<E> {
824 >        private int index;            // current index, modified on advance/split
825 >        private int fence;            // -1 until first use
826 >        private int expectedModCount; // initialized when fence set
827 >
828 >        /** Creates new spliterator covering the given range. */
829 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 >            this.index = origin;
831 >            this.fence = fence;
832              this.expectedModCount = expectedModCount;
833          }
834  
835 <        public PriorityQueueSpliterator<E> trySplit() {
836 <            int lo = index, mid = (lo + fence) >>> 1;
835 >        private int getFence() { // initialize fence to size on first use
836 >            int hi;
837 >            if ((hi = fence) < 0) {
838 >                expectedModCount = modCount;
839 >                hi = fence = size;
840 >            }
841 >            return hi;
842 >        }
843 >
844 >        public PriorityQueueSpliterator trySplit() {
845 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846              return (lo >= mid) ? null :
847 <                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
823 <                                                expectedModCount);
847 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848          }
849  
850 <        public void forEach(Consumer<? super E> block) {
851 <            Object[] a; int i, hi; // hoist accesses and checks from loop
828 <            if (block == null)
850 >        public void forEachRemaining(Consumer<? super E> action) {
851 >            if (action == null)
852                  throw new NullPointerException();
853 <            if ((a = pq.queue).length >= (hi = fence) &&
854 <                (i = index) >= 0 && i < hi) {
855 <                index = hi;
856 <                do {
857 <                    @SuppressWarnings("unchecked") E e = (E) a[i];
858 <                    block.accept(e);
859 <                } while (++i < hi);
837 <                if (pq.modCount != expectedModCount)
838 <                    throw new ConcurrentModificationException();
853 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
854 >            final Object[] es = queue;
855 >            int i, hi; E e;
856 >            for (i = index, index = hi = fence; i < hi; i++) {
857 >                if ((e = (E) es[i]) == null)
858 >                    break;      // must be CME
859 >                action.accept(e);
860              }
861 +            if (modCount != expectedModCount)
862 +                throw new ConcurrentModificationException();
863          }
864  
865 <        public boolean tryAdvance(Consumer<? super E> block) {
866 <            if (index >= 0 && index < fence) {
867 <                @SuppressWarnings("unchecked") E e =
868 <                    (E)pq.queue[index++];
869 <                block.accept(e);
870 <                if (pq.modCount != expectedModCount)
865 >        public boolean tryAdvance(Consumer<? super E> action) {
866 >            if (action == null)
867 >                throw new NullPointerException();
868 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
869 >            int i;
870 >            if ((i = index) < fence) {
871 >                index = i + 1;
872 >                E e;
873 >                if ((e = (E) queue[i]) == null
874 >                    || modCount != expectedModCount)
875                      throw new ConcurrentModificationException();
876 +                action.accept(e);
877                  return true;
878              }
879              return false;
880          }
881  
882 <        public long estimateSize() { return (long)(fence - index); }
883 <        public boolean hasExactSize() { return true; }
884 <        public boolean hasExactSplits() { return true; }
882 >        public long estimateSize() {
883 >            return getFence() - index;
884 >        }
885 >
886 >        public int characteristics() {
887 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
888 >        }
889 >    }
890 >
891 >    /**
892 >     * @throws NullPointerException {@inheritDoc}
893 >     */
894 >    public boolean removeIf(Predicate<? super E> filter) {
895 >        Objects.requireNonNull(filter);
896 >        return bulkRemove(filter);
897 >    }
898 >
899 >    /**
900 >     * @throws NullPointerException {@inheritDoc}
901 >     */
902 >    public boolean removeAll(Collection<?> c) {
903 >        Objects.requireNonNull(c);
904 >        return bulkRemove(e -> c.contains(e));
905 >    }
906 >
907 >    /**
908 >     * @throws NullPointerException {@inheritDoc}
909 >     */
910 >    public boolean retainAll(Collection<?> c) {
911 >        Objects.requireNonNull(c);
912 >        return bulkRemove(e -> !c.contains(e));
913 >    }
914 >
915 >    // A tiny bit set implementation
916 >
917 >    private static long[] nBits(int n) {
918 >        return new long[((n - 1) >> 6) + 1];
919 >    }
920 >    private static void setBit(long[] bits, int i) {
921 >        bits[i >> 6] |= 1L << i;
922 >    }
923 >    private static boolean isClear(long[] bits, int i) {
924 >        return (bits[i >> 6] & (1L << i)) == 0;
925 >    }
926 >
927 >    /** Implementation of bulk remove methods. */
928 >    private boolean bulkRemove(Predicate<? super E> filter) {
929 >        final int expectedModCount = ++modCount;
930 >        final Object[] es = queue;
931 >        final int end = size;
932 >        int i;
933 >        // Optimize for initial run of survivors
934 >        for (i = 0; i < end && !filter.test((E) es[i]); i++)
935 >            ;
936 >        if (i >= end) {
937 >            if (modCount != expectedModCount)
938 >                throw new ConcurrentModificationException();
939 >            return false;
940 >        }
941 >        // Tolerate predicates that reentrantly access the collection for
942 >        // read (but writers still get CME), so traverse once to find
943 >        // elements to delete, a second pass to physically expunge.
944 >        final int beg = i;
945 >        final long[] deathRow = nBits(end - beg);
946 >        deathRow[0] = 1L;   // set bit 0
947 >        for (i = beg + 1; i < end; i++)
948 >            if (filter.test((E) es[i]))
949 >                setBit(deathRow, i - beg);
950 >        if (modCount != expectedModCount)
951 >            throw new ConcurrentModificationException();
952 >        int w = beg;
953 >        for (i = beg; i < end; i++)
954 >            if (isClear(deathRow, i - beg))
955 >                es[w++] = es[i];
956 >        for (i = size = w; i < end; i++)
957 >            es[i] = null;
958 >        heapify();
959 >        return true;
960 >    }
961 >
962 >    /**
963 >     * @throws NullPointerException {@inheritDoc}
964 >     */
965 >    public void forEach(Consumer<? super E> action) {
966 >        Objects.requireNonNull(action);
967 >        final int expectedModCount = modCount;
968 >        final Object[] es = queue;
969 >        for (int i = 0, n = size; i < n; i++)
970 >            action.accept((E) es[i]);
971 >        if (expectedModCount != modCount)
972 >            throw new ConcurrentModificationException();
973      }
974   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines