ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.15 by dholmes, Thu Jul 31 07:18:02 2003 UTC vs.
Revision 1.84 by jsr166, Sat Jan 19 18:11:56 2013 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 > import java.util.stream.Stream;
28 > import java.util.Spliterator;
29 > import java.util.stream.Streams;
30 > import java.util.function.Block;
31  
32   /**
33 < * An unbounded priority queue based on a priority heap.  This queue orders
34 < * elements according to an order specified at construction time, which is
35 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}:
36 < * elements are ordered
37 < * either according to their <i>natural order</i> (see {@link Comparable}), or
38 < * according to a {@link Comparator}, depending on which constructor is used.
39 < * The <em>head</em> of this queue is the least element with respect to the
40 < * specified ordering. If multiple elements are tied for least value, the
41 < * head is one of those elements. A priority queue does not permit
42 < * <tt>null</tt> elements.
43 < *
44 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
45 < * return the head of the queue.
46 < *
47 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
48 < * not delete, the head of the queue.
49 < *
50 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
51 < * size of the array used internally to store the elements on the
52 < * queue.  It is always at least as large as the queue size.  As
53 < * elements are added to a priority queue, its capacity grows
54 < * automatically.  The details of the growth policy are not specified.
55 < *
56 < * <p>Implementation note: this implementation provides O(log(n)) time
57 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
58 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
59 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
60 < * constant time for the retrieval methods (<tt>peek</tt>,
61 < * <tt>element</tt>, and <tt>size</tt>).
33 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34 > * The elements of the priority queue are ordered according to their
35 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36 > * provided at queue construction time, depending on which constructor is
37 > * used.  A priority queue does not permit {@code null} elements.
38 > * A priority queue relying on natural ordering also does not permit
39 > * insertion of non-comparable objects (doing so may result in
40 > * {@code ClassCastException}).
41 > *
42 > * <p>The <em>head</em> of this queue is the <em>least</em> element
43 > * with respect to the specified ordering.  If multiple elements are
44 > * tied for least value, the head is one of those elements -- ties are
45 > * broken arbitrarily.  The queue retrieval operations {@code poll},
46 > * {@code remove}, {@code peek}, and {@code element} access the
47 > * element at the head of the queue.
48 > *
49 > * <p>A priority queue is unbounded, but has an internal
50 > * <i>capacity</i> governing the size of an array used to store the
51 > * elements on the queue.  It is always at least as large as the queue
52 > * size.  As elements are added to a priority queue, its capacity
53 > * grows automatically.  The details of the growth policy are not
54 > * specified.
55 > *
56 > * <p>This class and its iterator implement all of the
57 > * <em>optional</em> methods of the {@link Collection} and {@link
58 > * Iterator} interfaces.  The Iterator provided in method {@link
59 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67 > * java.util.concurrent.PriorityBlockingQueue} class.
68 > *
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueing and dequeing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78   * Java Collections Framework</a>.
79 + *
80   * @since 1.5
81 < * @author Josh Bloch
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this collection
83   */
84   public class PriorityQueue<E> extends AbstractQueue<E>
85 <    implements Queue<E>, java.io.Serializable {
85 >    implements java.io.Serializable {
86 >
87 >    private static final long serialVersionUID = -7720805057305804111L;
88  
89      private static final int DEFAULT_INITIAL_CAPACITY = 11;
90  
91      /**
92 <     * Priority queue represented as a balanced binary heap: the two children
93 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
94 <     * ordered by comparator, or by the elements' natural ordering, if
95 <     * comparator is null:  For each node n in the heap and each descendant d
96 <     * of n, n <= d.
97 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
92 >     * Priority queue represented as a balanced binary heap: the two
93 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
94 >     * priority queue is ordered by comparator, or by the elements'
95 >     * natural ordering, if comparator is null: For each node n in the
96 >     * heap and each descendant d of n, n <= d.  The element with the
97 >     * lowest value is in queue[0], assuming the queue is nonempty.
98       */
99 <    private transient E[] queue;
99 >    transient Object[] queue; // non-private to simplify nested class access
100  
101      /**
102       * The number of elements in the priority queue.
# Line 66 | Line 107 | public class PriorityQueue<E> extends Ab
107       * The comparator, or null if priority queue uses elements'
108       * natural ordering.
109       */
110 <    private final Comparator<E> comparator;
110 >    private final Comparator<? super E> comparator;
111  
112      /**
113       * The number of times this priority queue has been
114       * <i>structurally modified</i>.  See AbstractList for gory details.
115       */
116 <    private transient int modCount = 0;
116 >    transient int modCount = 0; // non-private to simplify nested class access
117  
118      /**
119 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
120 <     * (11) that orders its elements according to their natural
121 <     * ordering (using <tt>Comparable</tt>.)
119 >     * Creates a {@code PriorityQueue} with the default initial
120 >     * capacity (11) that orders its elements according to their
121 >     * {@linkplain Comparable natural ordering}.
122       */
123      public PriorityQueue() {
124          this(DEFAULT_INITIAL_CAPACITY, null);
125      }
126  
127      /**
128 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
129 <     * that orders its elements according to their natural ordering
130 <     * (using <tt>Comparable</tt>.)
131 <     *
132 <     * @param initialCapacity the initial capacity for this priority queue.
128 >     * Creates a {@code PriorityQueue} with the specified initial
129 >     * capacity that orders its elements according to their
130 >     * {@linkplain Comparable natural ordering}.
131 >     *
132 >     * @param initialCapacity the initial capacity for this priority queue
133 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
134 >     *         than 1
135       */
136      public PriorityQueue(int initialCapacity) {
137          this(initialCapacity, null);
138      }
139  
140      /**
141 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
141 >     * Creates a {@code PriorityQueue} with the specified initial capacity
142       * that orders its elements according to the specified comparator.
143       *
144 <     * @param initialCapacity the initial capacity for this priority queue.
145 <     * @param comparator the comparator used to order this priority queue.
146 <     * If <tt>null</tt> then the order depends on the elements' natural
147 <     * ordering.
148 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
149 <     * than 1
150 <     */
151 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
144 >     * @param  initialCapacity the initial capacity for this priority queue
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @throws IllegalArgumentException if {@code initialCapacity} is
149 >     *         less than 1
150 >     */
151 >    public PriorityQueue(int initialCapacity,
152 >                         Comparator<? super E> comparator) {
153 >        // Note: This restriction of at least one is not actually needed,
154 >        // but continues for 1.5 compatibility
155          if (initialCapacity < 1)
156              throw new IllegalArgumentException();
157 <        queue = (E[]) new Object[initialCapacity + 1];
157 >        this.queue = new Object[initialCapacity];
158          this.comparator = comparator;
159      }
160  
161      /**
162 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
163 <     * collection.  The priority queue has an initial capacity of 110% of the
164 <     * size of the specified collection; or 1 if the collection is empty.
165 <     * If the specified collection
166 <     * implements the {@link Sorted} interface, the priority queue will be
167 <     * sorted according to the same comparator, or according to its elements'
122 <     * natural order if the collection is sorted according to its elements'
123 <     * natural order.  If the specified collection does not implement
124 <     * <tt>Sorted</tt>, the priority queue is ordered according to
125 <     * its elements' natural order.
162 >     * Creates a {@code PriorityQueue} containing the elements in the
163 >     * specified collection.  If the specified collection is an instance of
164 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
165 >     * priority queue will be ordered according to the same ordering.
166 >     * Otherwise, this priority queue will be ordered according to the
167 >     * {@linkplain Comparable natural ordering} of its elements.
168       *
169 <     * @param c the collection whose elements are to be placed
170 <     *        into this priority queue.
169 >     * @param  c the collection whose elements are to be placed
170 >     *         into this priority queue
171       * @throws ClassCastException if elements of the specified collection
172       *         cannot be compared to one another according to the priority
173 <     *         queue's ordering.
174 <     * @throws NullPointerException if <tt>c</tt> or any element within it
175 <     * is <tt>null</tt>
176 <     */
177 <    public PriorityQueue(Collection<E> c) {
178 <        int sz = c.size();
179 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
180 <                                            Integer.MAX_VALUE - 1);
181 <        if (initialCapacity < 1)
182 <            initialCapacity = 1;
173 >     *         queue's ordering
174 >     * @throws NullPointerException if the specified collection or any
175 >     *         of its elements are null
176 >     */
177 >    @SuppressWarnings("unchecked")
178 >    public PriorityQueue(Collection<? extends E> c) {
179 >        if (c instanceof SortedSet<?>) {
180 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
181 >            this.comparator = (Comparator<? super E>) ss.comparator();
182 >            initElementsFromCollection(ss);
183 >        }
184 >        else if (c instanceof PriorityQueue<?>) {
185 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
186 >            this.comparator = (Comparator<? super E>) pq.comparator();
187 >            initFromPriorityQueue(pq);
188 >        }
189 >        else {
190 >            this.comparator = null;
191 >            initFromCollection(c);
192 >        }
193 >    }
194  
195 <        queue = (E[]) new Object[initialCapacity + 1];
195 >    /**
196 >     * Creates a {@code PriorityQueue} containing the elements in the
197 >     * specified priority queue.  This priority queue will be
198 >     * ordered according to the same ordering as the given priority
199 >     * queue.
200 >     *
201 >     * @param  c the priority queue whose elements are to be placed
202 >     *         into this priority queue
203 >     * @throws ClassCastException if elements of {@code c} cannot be
204 >     *         compared to one another according to {@code c}'s
205 >     *         ordering
206 >     * @throws NullPointerException if the specified priority queue or any
207 >     *         of its elements are null
208 >     */
209 >    @SuppressWarnings("unchecked")
210 >    public PriorityQueue(PriorityQueue<? extends E> c) {
211 >        this.comparator = (Comparator<? super E>) c.comparator();
212 >        initFromPriorityQueue(c);
213 >    }
214  
215 <        if (c instanceof Sorted) {
216 <            // FIXME: this code assumes too much
217 <            comparator = ((Sorted)c).comparator();
218 <            for (Iterator<E> i = c.iterator(); i.hasNext(); )
219 <                queue[++size] = i.next();
215 >    /**
216 >     * Creates a {@code PriorityQueue} containing the elements in the
217 >     * specified sorted set.   This priority queue will be ordered
218 >     * according to the same ordering as the given sorted set.
219 >     *
220 >     * @param  c the sorted set whose elements are to be placed
221 >     *         into this priority queue
222 >     * @throws ClassCastException if elements of the specified sorted
223 >     *         set cannot be compared to one another according to the
224 >     *         sorted set's ordering
225 >     * @throws NullPointerException if the specified sorted set or any
226 >     *         of its elements are null
227 >     */
228 >    @SuppressWarnings("unchecked")
229 >    public PriorityQueue(SortedSet<? extends E> c) {
230 >        this.comparator = (Comparator<? super E>) c.comparator();
231 >        initElementsFromCollection(c);
232 >    }
233 >
234 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
235 >        if (c.getClass() == PriorityQueue.class) {
236 >            this.queue = c.toArray();
237 >            this.size = c.size();
238          } else {
239 <            comparator = null;
151 <            for (Iterator<E> i = c.iterator(); i.hasNext(); )
152 <                add(i.next());
239 >            initFromCollection(c);
240          }
241      }
242  
243 <    // Queue Methods
243 >    private void initElementsFromCollection(Collection<? extends E> c) {
244 >        Object[] a = c.toArray();
245 >        // If c.toArray incorrectly doesn't return Object[], copy it.
246 >        if (a.getClass() != Object[].class)
247 >            a = Arrays.copyOf(a, a.length, Object[].class);
248 >        int len = a.length;
249 >        if (len == 1 || this.comparator != null)
250 >            for (int i = 0; i < len; i++)
251 >                if (a[i] == null)
252 >                    throw new NullPointerException();
253 >        this.queue = a;
254 >        this.size = a.length;
255 >    }
256  
257      /**
258 <     * Add the specified element to this priority queue.
258 >     * Initializes queue array with elements from the given Collection.
259       *
260 <     * @param element the element to add.
162 <     * @return <tt>true</tt>
163 <     * @throws ClassCastException if the specified element cannot be compared
164 <     * with elements currently in the priority queue according
165 <     * to the priority queue's ordering.
166 <     * @throws NullPointerException if the specified element is null.
260 >     * @param c the collection
261       */
262 <    public boolean offer(E element) {
263 <        if (element == null)
264 <            throw new NullPointerException();
171 <        modCount++;
172 <        ++size;
173 <
174 <        // Grow backing store if necessary
175 <        while (size >= queue.length) {
176 <            E[] newQueue = (E[]) new Object[2 * queue.length];
177 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
178 <            queue = newQueue;
179 <        }
180 <
181 <        queue[size] = element;
182 <        fixUp(size);
183 <        return true;
262 >    private void initFromCollection(Collection<? extends E> c) {
263 >        initElementsFromCollection(c);
264 >        heapify();
265      }
266  
267 <    public E poll() {
268 <        if (size == 0)
269 <            return null;
270 <        return remove(1);
271 <    }
267 >    /**
268 >     * The maximum size of array to allocate.
269 >     * Some VMs reserve some header words in an array.
270 >     * Attempts to allocate larger arrays may result in
271 >     * OutOfMemoryError: Requested array size exceeds VM limit
272 >     */
273 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
274  
275 <    public E peek() {
276 <        return queue[1];
275 >    /**
276 >     * Increases the capacity of the array.
277 >     *
278 >     * @param minCapacity the desired minimum capacity
279 >     */
280 >    private void grow(int minCapacity) {
281 >        int oldCapacity = queue.length;
282 >        // Double size if small; else grow by 50%
283 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
284 >                                         (oldCapacity + 2) :
285 >                                         (oldCapacity >> 1));
286 >        // overflow-conscious code
287 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
288 >            newCapacity = hugeCapacity(minCapacity);
289 >        queue = Arrays.copyOf(queue, newCapacity);
290      }
291  
292 <    // Collection Methods
293 <
294 <    // these first two override just to get the throws docs
292 >    private static int hugeCapacity(int minCapacity) {
293 >        if (minCapacity < 0) // overflow
294 >            throw new OutOfMemoryError();
295 >        return (minCapacity > MAX_ARRAY_SIZE) ?
296 >            Integer.MAX_VALUE :
297 >            MAX_ARRAY_SIZE;
298 >    }
299  
300      /**
301 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
302 <     * @throws ClassCastException if the specified element cannot be compared
303 <     * with elements currently in the priority queue according
304 <     * to the priority queue's ordering.
301 >     * Inserts the specified element into this priority queue.
302 >     *
303 >     * @return {@code true} (as specified by {@link Collection#add})
304 >     * @throws ClassCastException if the specified element cannot be
305 >     *         compared with elements currently in this priority queue
306 >     *         according to the priority queue's ordering
307 >     * @throws NullPointerException if the specified element is null
308       */
309 <    public boolean add(E element) {
310 <        return super.add(element);
309 >    public boolean add(E e) {
310 >        return offer(e);
311      }
312  
313      /**
314 <     * @throws NullPointerException if any element is <tt>null</tt>.
315 <     * @throws ClassCastException if any element cannot be compared
316 <     * with elements currently in the priority queue according
317 <     * to the priority queue's ordering.
314 >     * Inserts the specified element into this priority queue.
315 >     *
316 >     * @return {@code true} (as specified by {@link Queue#offer})
317 >     * @throws ClassCastException if the specified element cannot be
318 >     *         compared with elements currently in this priority queue
319 >     *         according to the priority queue's ordering
320 >     * @throws NullPointerException if the specified element is null
321       */
322 <    public boolean addAll(Collection<? extends E> c) {
323 <        return super.addAll(c);
322 >    public boolean offer(E e) {
323 >        if (e == null)
324 >            throw new NullPointerException();
325 >        modCount++;
326 >        int i = size;
327 >        if (i >= queue.length)
328 >            grow(i + 1);
329 >        size = i + 1;
330 >        if (i == 0)
331 >            queue[0] = e;
332 >        else
333 >            siftUp(i, e);
334 >        return true;
335      }
336  
337 +    @SuppressWarnings("unchecked")
338 +    public E peek() {
339 +        return (size == 0) ? null : (E) queue[0];
340 +    }
341 +
342 +    private int indexOf(Object o) {
343 +        if (o != null) {
344 +            for (int i = 0; i < size; i++)
345 +                if (o.equals(queue[i]))
346 +                    return i;
347 +        }
348 +        return -1;
349 +    }
350 +
351 +    /**
352 +     * Removes a single instance of the specified element from this queue,
353 +     * if it is present.  More formally, removes an element {@code e} such
354 +     * that {@code o.equals(e)}, if this queue contains one or more such
355 +     * elements.  Returns {@code true} if and only if this queue contained
356 +     * the specified element (or equivalently, if this queue changed as a
357 +     * result of the call).
358 +     *
359 +     * @param o element to be removed from this queue, if present
360 +     * @return {@code true} if this queue changed as a result of the call
361 +     */
362      public boolean remove(Object o) {
363 <        if (o == null)
363 >        int i = indexOf(o);
364 >        if (i == -1)
365              return false;
366 +        else {
367 +            removeAt(i);
368 +            return true;
369 +        }
370 +    }
371  
372 <        if (comparator == null) {
373 <            for (int i = 1; i <= size; i++) {
374 <                if (((Comparable)queue[i]).compareTo(o) == 0) {
375 <                    remove(i);
376 <                    return true;
377 <                }
378 <            }
379 <        } else {
380 <            for (int i = 1; i <= size; i++) {
381 <                if (comparator.compare(queue[i], (E)o) == 0) {
382 <                    remove(i);
383 <                    return true;
236 <                }
372 >    /**
373 >     * Version of remove using reference equality, not equals.
374 >     * Needed by iterator.remove.
375 >     *
376 >     * @param o element to be removed from this queue, if present
377 >     * @return {@code true} if removed
378 >     */
379 >    boolean removeEq(Object o) {
380 >        for (int i = 0; i < size; i++) {
381 >            if (o == queue[i]) {
382 >                removeAt(i);
383 >                return true;
384              }
385          }
386          return false;
387      }
388  
389 +    /**
390 +     * Returns {@code true} if this queue contains the specified element.
391 +     * More formally, returns {@code true} if and only if this queue contains
392 +     * at least one element {@code e} such that {@code o.equals(e)}.
393 +     *
394 +     * @param o object to be checked for containment in this queue
395 +     * @return {@code true} if this queue contains the specified element
396 +     */
397 +    public boolean contains(Object o) {
398 +        return indexOf(o) != -1;
399 +    }
400 +
401 +    /**
402 +     * Returns an array containing all of the elements in this queue.
403 +     * The elements are in no particular order.
404 +     *
405 +     * <p>The returned array will be "safe" in that no references to it are
406 +     * maintained by this queue.  (In other words, this method must allocate
407 +     * a new array).  The caller is thus free to modify the returned array.
408 +     *
409 +     * <p>This method acts as bridge between array-based and collection-based
410 +     * APIs.
411 +     *
412 +     * @return an array containing all of the elements in this queue
413 +     */
414 +    public Object[] toArray() {
415 +        return Arrays.copyOf(queue, size);
416 +    }
417 +
418 +    /**
419 +     * Returns an array containing all of the elements in this queue; the
420 +     * runtime type of the returned array is that of the specified array.
421 +     * The returned array elements are in no particular order.
422 +     * If the queue fits in the specified array, it is returned therein.
423 +     * Otherwise, a new array is allocated with the runtime type of the
424 +     * specified array and the size of this queue.
425 +     *
426 +     * <p>If the queue fits in the specified array with room to spare
427 +     * (i.e., the array has more elements than the queue), the element in
428 +     * the array immediately following the end of the collection is set to
429 +     * {@code null}.
430 +     *
431 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
432 +     * array-based and collection-based APIs.  Further, this method allows
433 +     * precise control over the runtime type of the output array, and may,
434 +     * under certain circumstances, be used to save allocation costs.
435 +     *
436 +     * <p>Suppose {@code x} is a queue known to contain only strings.
437 +     * The following code can be used to dump the queue into a newly
438 +     * allocated array of {@code String}:
439 +     *
440 +     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
441 +     *
442 +     * Note that {@code toArray(new Object[0])} is identical in function to
443 +     * {@code toArray()}.
444 +     *
445 +     * @param a the array into which the elements of the queue are to
446 +     *          be stored, if it is big enough; otherwise, a new array of the
447 +     *          same runtime type is allocated for this purpose.
448 +     * @return an array containing all of the elements in this queue
449 +     * @throws ArrayStoreException if the runtime type of the specified array
450 +     *         is not a supertype of the runtime type of every element in
451 +     *         this queue
452 +     * @throws NullPointerException if the specified array is null
453 +     */
454 +    @SuppressWarnings("unchecked")
455 +    public <T> T[] toArray(T[] a) {
456 +        if (a.length < size)
457 +            // Make a new array of a's runtime type, but my contents:
458 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
459 +        System.arraycopy(queue, 0, a, 0, size);
460 +        if (a.length > size)
461 +            a[size] = null;
462 +        return a;
463 +    }
464 +
465 +    /**
466 +     * Returns an iterator over the elements in this queue. The iterator
467 +     * does not return the elements in any particular order.
468 +     *
469 +     * @return an iterator over the elements in this queue
470 +     */
471      public Iterator<E> iterator() {
472          return new Itr();
473      }
474  
475 <    private class Itr implements Iterator<E> {
475 >    private final class Itr implements Iterator<E> {
476          /**
477           * Index (into queue array) of element to be returned by
478           * subsequent call to next.
479           */
480 <        private int cursor = 1;
480 >        private int cursor = 0;
481 >
482 >        /**
483 >         * Index of element returned by most recent call to next,
484 >         * unless that element came from the forgetMeNot list.
485 >         * Set to -1 if element is deleted by a call to remove.
486 >         */
487 >        private int lastRet = -1;
488  
489          /**
490 <         * Index of element returned by most recent call to next or
491 <         * previous.  Reset to 0 if this element is deleted by a call
492 <         * to remove.
490 >         * A queue of elements that were moved from the unvisited portion of
491 >         * the heap into the visited portion as a result of "unlucky" element
492 >         * removals during the iteration.  (Unlucky element removals are those
493 >         * that require a siftup instead of a siftdown.)  We must visit all of
494 >         * the elements in this list to complete the iteration.  We do this
495 >         * after we've completed the "normal" iteration.
496 >         *
497 >         * We expect that most iterations, even those involving removals,
498 >         * will not need to store elements in this field.
499           */
500 <        private int lastRet = 0;
500 >        private ArrayDeque<E> forgetMeNot = null;
501 >
502 >        /**
503 >         * Element returned by the most recent call to next iff that
504 >         * element was drawn from the forgetMeNot list.
505 >         */
506 >        private E lastRetElt = null;
507  
508          /**
509           * The modCount value that the iterator believes that the backing
510 <         * List should have.  If this expectation is violated, the iterator
510 >         * Queue should have.  If this expectation is violated, the iterator
511           * has detected concurrent modification.
512           */
513          private int expectedModCount = modCount;
514  
515          public boolean hasNext() {
516 <            return cursor <= size;
516 >            return cursor < size ||
517 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
518          }
519  
520 +        @SuppressWarnings("unchecked")
521          public E next() {
522 <            checkForComodification();
523 <            if (cursor > size)
524 <                throw new NoSuchElementException();
525 <            E result = queue[cursor];
526 <            lastRet = cursor++;
527 <            return result;
522 >            if (expectedModCount != modCount)
523 >                throw new ConcurrentModificationException();
524 >            if (cursor < size)
525 >                return (E) queue[lastRet = cursor++];
526 >            if (forgetMeNot != null) {
527 >                lastRet = -1;
528 >                lastRetElt = forgetMeNot.poll();
529 >                if (lastRetElt != null)
530 >                    return lastRetElt;
531 >            }
532 >            throw new NoSuchElementException();
533          }
534  
535          public void remove() {
536 <            if (lastRet == 0)
536 >            if (expectedModCount != modCount)
537 >                throw new ConcurrentModificationException();
538 >            if (lastRet != -1) {
539 >                E moved = PriorityQueue.this.removeAt(lastRet);
540 >                lastRet = -1;
541 >                if (moved == null)
542 >                    cursor--;
543 >                else {
544 >                    if (forgetMeNot == null)
545 >                        forgetMeNot = new ArrayDeque<E>();
546 >                    forgetMeNot.add(moved);
547 >                }
548 >            } else if (lastRetElt != null) {
549 >                PriorityQueue.this.removeEq(lastRetElt);
550 >                lastRetElt = null;
551 >            } else {
552                  throw new IllegalStateException();
553 <            checkForComodification();
284 <
285 <            PriorityQueue.this.remove(lastRet);
286 <            if (lastRet < cursor)
287 <                cursor--;
288 <            lastRet = 0;
553 >            }
554              expectedModCount = modCount;
555          }
291
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
556      }
557  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
558      public int size() {
559          return size;
560      }
561  
562      /**
563 <     * Remove all elements from the priority queue.
563 >     * Removes all of the elements from this priority queue.
564 >     * The queue will be empty after this call returns.
565       */
566      public void clear() {
567          modCount++;
568 <
313 <        // Null out element references to prevent memory leak
314 <        for (int i=1; i<=size; i++)
568 >        for (int i = 0; i < size; i++)
569              queue[i] = null;
316
570          size = 0;
571      }
572  
573 <    /**
574 <     * Removes and returns the ith element from queue.  Recall
575 <     * that queue is one-based, so 1 <= i <= size.
576 <     *
577 <     * XXX: Could further special-case i==size, but is it worth it?
325 <     * XXX: Could special-case i==0, but is it worth it?
326 <     */
327 <    private E remove(int i) {
328 <        assert i <= size;
573 >    @SuppressWarnings("unchecked")
574 >    public E poll() {
575 >        if (size == 0)
576 >            return null;
577 >        int s = --size;
578          modCount++;
579 <
580 <        E result = queue[i];
581 <        queue[i] = queue[size];
582 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
583 <        if (i <= size)
335 <            fixDown(i);
579 >        E result = (E) queue[0];
580 >        E x = (E) queue[s];
581 >        queue[s] = null;
582 >        if (s != 0)
583 >            siftDown(0, x);
584          return result;
585      }
586  
587      /**
588 <     * Establishes the heap invariant (described above) assuming the heap
589 <     * satisfies the invariant except possibly for the leaf-node indexed by k
590 <     * (which may have a nextExecutionTime less than its parent's).
591 <     *
592 <     * This method functions by "promoting" queue[k] up the hierarchy
593 <     * (by swapping it with its parent) repeatedly until queue[k]
594 <     * is greater than or equal to its parent.
595 <     */
596 <    private void fixUp(int k) {
597 <        if (comparator == null) {
598 <            while (k > 1) {
599 <                int j = k >> 1;
600 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
601 <                    break;
602 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
603 <                k = j;
604 <            }
605 <        } else {
606 <            while (k > 1) {
607 <                int j = k >> 1;
608 <                if (comparator.compare(queue[j], queue[k]) <= 0)
609 <                    break;
610 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
611 <                k = j;
588 >     * Removes the ith element from queue.
589 >     *
590 >     * Normally this method leaves the elements at up to i-1,
591 >     * inclusive, untouched.  Under these circumstances, it returns
592 >     * null.  Occasionally, in order to maintain the heap invariant,
593 >     * it must swap a later element of the list with one earlier than
594 >     * i.  Under these circumstances, this method returns the element
595 >     * that was previously at the end of the list and is now at some
596 >     * position before i. This fact is used by iterator.remove so as to
597 >     * avoid missing traversing elements.
598 >     */
599 >    @SuppressWarnings("unchecked")
600 >    private E removeAt(int i) {
601 >        // assert i >= 0 && i < size;
602 >        modCount++;
603 >        int s = --size;
604 >        if (s == i) // removed last element
605 >            queue[i] = null;
606 >        else {
607 >            E moved = (E) queue[s];
608 >            queue[s] = null;
609 >            siftDown(i, moved);
610 >            if (queue[i] == moved) {
611 >                siftUp(i, moved);
612 >                if (queue[i] != moved)
613 >                    return moved;
614              }
615          }
616 +        return null;
617      }
618  
619      /**
620 <     * Establishes the heap invariant (described above) in the subtree
621 <     * rooted at k, which is assumed to satisfy the heap invariant except
622 <     * possibly for node k itself (which may be greater than its children).
623 <     *
624 <     * This method functions by "demoting" queue[k] down the hierarchy
625 <     * (by swapping it with its smaller child) repeatedly until queue[k]
626 <     * is less than or equal to its children.
627 <     */
628 <    private void fixDown(int k) {
629 <        int j;
630 <        if (comparator == null) {
631 <            while ((j = k << 1) <= size) {
632 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
633 <                    j++; // j indexes smallest kid
634 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
635 <                    break;
636 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
637 <                k = j;
638 <            }
639 <        } else {
640 <            while ((j = k << 1) <= size) {
641 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
642 <                    j++; // j indexes smallest kid
643 <                if (comparator.compare(queue[k], queue[j]) <= 0)
644 <                    break;
645 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
646 <                k = j;
647 <            }
620 >     * Inserts item x at position k, maintaining heap invariant by
621 >     * promoting x up the tree until it is greater than or equal to
622 >     * its parent, or is the root.
623 >     *
624 >     * To simplify and speed up coercions and comparisons. the
625 >     * Comparable and Comparator versions are separated into different
626 >     * methods that are otherwise identical. (Similarly for siftDown.)
627 >     *
628 >     * @param k the position to fill
629 >     * @param x the item to insert
630 >     */
631 >    private void siftUp(int k, E x) {
632 >        if (comparator != null)
633 >            siftUpUsingComparator(k, x);
634 >        else
635 >            siftUpComparable(k, x);
636 >    }
637 >
638 >    @SuppressWarnings("unchecked")
639 >    private void siftUpComparable(int k, E x) {
640 >        Comparable<? super E> key = (Comparable<? super E>) x;
641 >        while (k > 0) {
642 >            int parent = (k - 1) >>> 1;
643 >            Object e = queue[parent];
644 >            if (key.compareTo((E) e) >= 0)
645 >                break;
646 >            queue[k] = e;
647 >            k = parent;
648 >        }
649 >        queue[k] = key;
650 >    }
651 >
652 >    @SuppressWarnings("unchecked")
653 >    private void siftUpUsingComparator(int k, E x) {
654 >        while (k > 0) {
655 >            int parent = (k - 1) >>> 1;
656 >            Object e = queue[parent];
657 >            if (comparator.compare(x, (E) e) >= 0)
658 >                break;
659 >            queue[k] = e;
660 >            k = parent;
661          }
662 +        queue[k] = x;
663      }
664  
665 <    public Comparator comparator() {
665 >    /**
666 >     * Inserts item x at position k, maintaining heap invariant by
667 >     * demoting x down the tree repeatedly until it is less than or
668 >     * equal to its children or is a leaf.
669 >     *
670 >     * @param k the position to fill
671 >     * @param x the item to insert
672 >     */
673 >    private void siftDown(int k, E x) {
674 >        if (comparator != null)
675 >            siftDownUsingComparator(k, x);
676 >        else
677 >            siftDownComparable(k, x);
678 >    }
679 >
680 >    @SuppressWarnings("unchecked")
681 >    private void siftDownComparable(int k, E x) {
682 >        Comparable<? super E> key = (Comparable<? super E>)x;
683 >        int half = size >>> 1;        // loop while a non-leaf
684 >        while (k < half) {
685 >            int child = (k << 1) + 1; // assume left child is least
686 >            Object c = queue[child];
687 >            int right = child + 1;
688 >            if (right < size &&
689 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
690 >                c = queue[child = right];
691 >            if (key.compareTo((E) c) <= 0)
692 >                break;
693 >            queue[k] = c;
694 >            k = child;
695 >        }
696 >        queue[k] = key;
697 >    }
698 >
699 >    @SuppressWarnings("unchecked")
700 >    private void siftDownUsingComparator(int k, E x) {
701 >        int half = size >>> 1;
702 >        while (k < half) {
703 >            int child = (k << 1) + 1;
704 >            Object c = queue[child];
705 >            int right = child + 1;
706 >            if (right < size &&
707 >                comparator.compare((E) c, (E) queue[right]) > 0)
708 >                c = queue[child = right];
709 >            if (comparator.compare(x, (E) c) <= 0)
710 >                break;
711 >            queue[k] = c;
712 >            k = child;
713 >        }
714 >        queue[k] = x;
715 >    }
716 >
717 >    /**
718 >     * Establishes the heap invariant (described above) in the entire tree,
719 >     * assuming nothing about the order of the elements prior to the call.
720 >     */
721 >    @SuppressWarnings("unchecked")
722 >    private void heapify() {
723 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
724 >            siftDown(i, (E) queue[i]);
725 >    }
726 >
727 >    /**
728 >     * Returns the comparator used to order the elements in this
729 >     * queue, or {@code null} if this queue is sorted according to
730 >     * the {@linkplain Comparable natural ordering} of its elements.
731 >     *
732 >     * @return the comparator used to order this queue, or
733 >     *         {@code null} if this queue is sorted according to the
734 >     *         natural ordering of its elements
735 >     */
736 >    public Comparator<? super E> comparator() {
737          return comparator;
738      }
739  
740      /**
741 <     * Save the state of the instance to a stream (that
406 <     * is, serialize it).
741 >     * Saves this queue to a stream (that is, serializes it).
742       *
743       * @serialData The length of the array backing the instance is
744 <     * emitted (int), followed by all of its elements (each an
745 <     * <tt>Object</tt>) in the proper order.
744 >     *             emitted (int), followed by all of its elements
745 >     *             (each an {@code Object}) in the proper order.
746       * @param s the stream
747       */
748 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
749 <        throws java.io.IOException{
748 >    private void writeObject(java.io.ObjectOutputStream s)
749 >        throws java.io.IOException {
750          // Write out element count, and any hidden stuff
751          s.defaultWriteObject();
752  
753 <        // Write out array length
754 <        s.writeInt(queue.length);
753 >        // Write out array length, for compatibility with 1.5 version
754 >        s.writeInt(Math.max(2, size + 1));
755  
756 <        // Write out all elements in the proper order.
757 <        for (int i=0; i<size; i++)
756 >        // Write out all elements in the "proper order".
757 >        for (int i = 0; i < size; i++)
758              s.writeObject(queue[i]);
759      }
760  
761      /**
762 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
763 <     * deserialize it).
762 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
763 >     * (that is, deserializes it).
764 >     *
765       * @param s the stream
766       */
767 <    private synchronized void readObject(java.io.ObjectInputStream s)
767 >    private void readObject(java.io.ObjectInputStream s)
768          throws java.io.IOException, ClassNotFoundException {
769          // Read in size, and any hidden stuff
770          s.defaultReadObject();
771  
772 <        // Read in array length and allocate array
773 <        int arrayLength = s.readInt();
438 <        queue = (E[]) new Object[arrayLength];
439 <
440 <        // Read in all elements in the proper order.
441 <        for (int i=0; i<size; i++)
442 <            queue[i] = (E)s.readObject();
443 <    }
772 >        // Read in (and discard) array length
773 >        s.readInt();
774  
775 < }
775 >        queue = new Object[size];
776 >
777 >        // Read in all elements.
778 >        for (int i = 0; i < size; i++)
779 >            queue[i] = s.readObject();
780 >
781 >        // Elements are guaranteed to be in "proper order", but the
782 >        // spec has never explained what that might be.
783 >        heapify();
784 >    }
785 >
786 >    // wrapping constructor in method avoids transient javac problems
787 >    final PriorityQueueSpliterator<E> spliterator(int origin, int fence,
788 >                                                  int expectedModCount) {
789 >        return new PriorityQueueSpliterator<E>(this, origin, fence,
790 >                                               expectedModCount);
791 >    }
792 >
793 >    public Stream<E> stream() {
794 >        int flags = Streams.STREAM_IS_SIZED;
795 >        return Streams.stream
796 >            (() -> spliterator(0, size, modCount), flags);
797 >    }
798 >    public Stream<E> parallelStream() {
799 >        int flags = Streams.STREAM_IS_SIZED;
800 >        return Streams.parallelStream
801 >            (() -> spliterator(0, size, modCount), flags);
802 >    }
803 >
804 >    /** Index-based split-by-two Spliterator */
805 >    static final class PriorityQueueSpliterator<E>
806 >        implements Spliterator<E>, Iterator<E> {
807 >        private final PriorityQueue<E> pq;
808 >        private int index;           // current index, modified on advance/split
809 >        private final int fence;     // one past last index
810 >        private final int expectedModCount; // for comodification checks
811 >
812 >        /** Create new spliterator covering the given  range */
813 >        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
814 >                             int expectedModCount) {
815 >            this.pq = pq; this.index = origin; this.fence = fence;
816 >            this.expectedModCount = expectedModCount;
817 >        }
818 >
819 >        public PriorityQueueSpliterator<E> trySplit() {
820 >            int lo = index, mid = (lo + fence) >>> 1;
821 >            return (lo >= mid) ? null :
822 >                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
823 >                                            expectedModCount);
824 >        }
825 >
826 >        public void forEach(Block<? super E> block) {
827 >            Object[] a; int i, hi; // hoist accesses and checks from loop
828 >            if (block == null)
829 >                throw new NullPointerException();
830 >            if ((a = pq.queue).length >= (hi = fence) &&
831 >                (i = index) >= 0 && i < hi) {
832 >                index = hi;
833 >                do {
834 >                    @SuppressWarnings("unchecked") E e = (E) a[i];
835 >                    block.accept(e);
836 >                } while (++i < hi);
837 >                if (pq.modCount != expectedModCount)
838 >                    throw new ConcurrentModificationException();
839 >            }
840 >        }
841 >
842 >        public boolean tryAdvance(Block<? super E> block) {
843 >            if (index >= 0 && index < fence) {
844 >                if (pq.modCount != expectedModCount)
845 >                    throw new ConcurrentModificationException();
846 >                @SuppressWarnings("unchecked") E e =
847 >                    (E)pq.queue[index++];
848 >                block.accept(e);
849 >                return true;
850 >            }
851 >            return false;
852 >        }
853  
854 +        public long estimateSize() { return (long)(fence - index); }
855 +        public boolean hasExactSize() { return true; }
856 +        public boolean hasExactSplits() { return true; }
857 +
858 +        // Iterator support
859 +        public Iterator<E> iterator() { return this; }
860 +        public void remove() { throw new UnsupportedOperationException(); }
861 +        public boolean hasNext() { return index >= 0 && index < fence; }
862 +
863 +        public E next() {
864 +            if (index < 0 || index >= fence)
865 +                throw new NoSuchElementException();
866 +            if (pq.modCount != expectedModCount)
867 +                throw new ConcurrentModificationException();
868 +            @SuppressWarnings("unchecked") E e =
869 +                (E) pq.queue[index++];
870 +            return e;
871 +        }
872 +    }
873 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines