ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.28 by dl, Wed Aug 13 14:11:59 2003 UTC vs.
Revision 1.131 by jsr166, Wed May 22 17:36:58 2019 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31 > import jdk.internal.util.ArraysSupport;
32  
33   /**
34 < * An unbounded priority {@linkplain Queue queue} based on a priority heap.  
35 < * This queue orders
36 < * elements according to an order specified at construction time, which is
37 < * specified in the same manner as {@link java.util.TreeSet} and
38 < * {@link java.util.TreeMap}: elements are ordered
39 < * either according to their <i>natural order</i> (see {@link Comparable}), or
40 < * according to a {@link java.util.Comparator}, depending on which
41 < * constructor is used.
42 < * <p>The <em>head</em> of this queue is the <em>least</em> element with
43 < * respect to the specified ordering.
44 < * If multiple elements are tied for least value, the
45 < * head is one of those elements. A priority queue does not permit
46 < * <tt>null</tt> elements.
47 < *
48 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
49 < * return the head of the queue.
50 < *
51 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
52 < * not delete, the head of the queue.
53 < *
54 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
55 < * size of the array used internally to store the elements on the
56 < * queue.
57 < * It is always at least as large as the queue size.  As
58 < * elements are added to a priority queue, its capacity grows
59 < * automatically.  The details of the growth policy are not specified.
60 < *
61 < * <p>Implementation note: this implementation provides O(log(n)) time
62 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
63 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
64 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
65 < * constant time for the retrieval methods (<tt>peek</tt>,
66 < * <tt>element</tt>, and <tt>size</tt>).
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42 > *
43 > * <p>The <em>head</em> of this queue is the <em>least</em> element
44 > * with respect to the specified ordering.  If multiple elements are
45 > * tied for least value, the head is one of those elements -- ties are
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48 > * element at the head of the queue.
49 > *
50 > * <p>A priority queue is unbounded, but has an internal
51 > * <i>capacity</i> governing the size of an array used to store the
52 > * elements on the queue.  It is always at least as large as the queue
53 > * size.  As elements are added to a priority queue, its capacity
54 > * grows automatically.  The details of the growth policy are not
55 > * specified.
56 > *
57 > * <p>This class and its iterator implement all of the
58 > * <em>optional</em> methods of the {@link Collection} and {@link
59 > * Iterator} interfaces.  The Iterator provided in method {@link
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62 > * the priority queue in any particular order. If you need ordered
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 > *
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69 > * java.util.concurrent.PriorityBlockingQueue} class.
70 > *
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../guide/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81 + *
82   * @since 1.5
83 < * @author Josh Bloch
83 > * @author Josh Bloch, Doug Lea
84 > * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88 <    implements Queue<E>, java.io.Serializable {
88 >    implements java.io.Serializable {
89 >
90 >    private static final long serialVersionUID = -7720805057305804111L;
91  
92      private static final int DEFAULT_INITIAL_CAPACITY = 11;
93  
94      /**
95 <     * Priority queue represented as a balanced binary heap: the two children
96 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
97 <     * ordered by comparator, or by the elements' natural ordering, if
98 <     * comparator is null:  For each node n in the heap and each descendant d
99 <     * of n, n <= d.
100 <     *
56 <     * The element with the lowest value is in queue[1], assuming the queue is
57 <     * nonempty.  (A one-based array is used in preference to the traditional
58 <     * zero-based array to simplify parent and child calculations.)
59 <     *
60 <     * queue.length must be >= 2, even if size == 0.
95 >     * Priority queue represented as a balanced binary heap: the two
96 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
97 >     * priority queue is ordered by comparator, or by the elements'
98 >     * natural ordering, if comparator is null: For each node n in the
99 >     * heap and each descendant d of n, n <= d.  The element with the
100 >     * lowest value is in queue[0], assuming the queue is nonempty.
101       */
102 <    private transient Object[] queue;
102 >    transient Object[] queue; // non-private to simplify nested class access
103  
104      /**
105       * The number of elements in the priority queue.
106       */
107 <    private int size = 0;
107 >    int size;
108  
109      /**
110       * The comparator, or null if priority queue uses elements'
# Line 76 | Line 116 | public class PriorityQueue<E> extends Ab
116       * The number of times this priority queue has been
117       * <i>structurally modified</i>.  See AbstractList for gory details.
118       */
119 <    private transient int modCount = 0;
119 >    transient int modCount;     // non-private to simplify nested class access
120  
121      /**
122 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
123 <     * (11) that orders its elements according to their natural
124 <     * ordering (using <tt>Comparable</tt>).
122 >     * Creates a {@code PriorityQueue} with the default initial
123 >     * capacity (11) that orders its elements according to their
124 >     * {@linkplain Comparable natural ordering}.
125       */
126      public PriorityQueue() {
127          this(DEFAULT_INITIAL_CAPACITY, null);
128      }
129  
130      /**
131 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
132 <     * that orders its elements according to their natural ordering
133 <     * (using <tt>Comparable</tt>).
134 <     *
135 <     * @param initialCapacity the initial capacity for this priority queue.
136 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
137 <     * than 1
131 >     * Creates a {@code PriorityQueue} with the specified initial
132 >     * capacity that orders its elements according to their
133 >     * {@linkplain Comparable natural ordering}.
134 >     *
135 >     * @param initialCapacity the initial capacity for this priority queue
136 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
137 >     *         than 1
138       */
139      public PriorityQueue(int initialCapacity) {
140          this(initialCapacity, null);
141      }
142  
143      /**
144 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
144 >     * Creates a {@code PriorityQueue} with the default initial capacity and
145 >     * whose elements are ordered according to the specified comparator.
146 >     *
147 >     * @param  comparator the comparator that will be used to order this
148 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
149 >     *         natural ordering} of the elements will be used.
150 >     * @since 1.8
151 >     */
152 >    public PriorityQueue(Comparator<? super E> comparator) {
153 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
154 >    }
155 >
156 >    /**
157 >     * Creates a {@code PriorityQueue} with the specified initial capacity
158       * that orders its elements according to the specified comparator.
159       *
160 <     * @param initialCapacity the initial capacity for this priority queue.
161 <     * @param comparator the comparator used to order this priority queue.
162 <     * If <tt>null</tt> then the order depends on the elements' natural
163 <     * ordering.
164 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
165 <     * than 1
160 >     * @param  initialCapacity the initial capacity for this priority queue
161 >     * @param  comparator the comparator that will be used to order this
162 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
163 >     *         natural ordering} of the elements will be used.
164 >     * @throws IllegalArgumentException if {@code initialCapacity} is
165 >     *         less than 1
166       */
167 <    public PriorityQueue(int initialCapacity,
167 >    public PriorityQueue(int initialCapacity,
168                           Comparator<? super E> comparator) {
169 +        // Note: This restriction of at least one is not actually needed,
170 +        // but continues for 1.5 compatibility
171          if (initialCapacity < 1)
172              throw new IllegalArgumentException();
173 <        this.queue = new Object[initialCapacity + 1];
173 >        this.queue = new Object[initialCapacity];
174          this.comparator = comparator;
175      }
176  
177      /**
178 <     * Common code to initialize underlying queue array across
179 <     * constructors below.
178 >     * Creates a {@code PriorityQueue} containing the elements in the
179 >     * specified collection.  If the specified collection is an instance of
180 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
181 >     * priority queue will be ordered according to the same ordering.
182 >     * Otherwise, this priority queue will be ordered according to the
183 >     * {@linkplain Comparable natural ordering} of its elements.
184 >     *
185 >     * @param  c the collection whose elements are to be placed
186 >     *         into this priority queue
187 >     * @throws ClassCastException if elements of the specified collection
188 >     *         cannot be compared to one another according to the priority
189 >     *         queue's ordering
190 >     * @throws NullPointerException if the specified collection or any
191 >     *         of its elements are null
192       */
193 <    private void initializeArray(Collection<? extends E> c) {
194 <        int sz = c.size();
195 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
196 <                                            Integer.MAX_VALUE - 1);
197 <        if (initialCapacity < 1)
198 <            initialCapacity = 1;
199 <
200 <        this.queue = new Object[initialCapacity + 1];
193 >    public PriorityQueue(Collection<? extends E> c) {
194 >        if (c instanceof SortedSet<?>) {
195 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
196 >            this.comparator = (Comparator<? super E>) ss.comparator();
197 >            initElementsFromCollection(ss);
198 >        }
199 >        else if (c instanceof PriorityQueue<?>) {
200 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
201 >            this.comparator = (Comparator<? super E>) pq.comparator();
202 >            initFromPriorityQueue(pq);
203 >        }
204 >        else {
205 >            this.comparator = null;
206 >            initFromCollection(c);
207 >        }
208      }
209  
210      /**
211 <     * Initially fill elements of the queue array under the
212 <     * knowledge that it is sorted or is another PQ, in which
213 <     * case we can just place the elements without fixups.
211 >     * Creates a {@code PriorityQueue} containing the elements in the
212 >     * specified priority queue.  This priority queue will be
213 >     * ordered according to the same ordering as the given priority
214 >     * queue.
215 >     *
216 >     * @param  c the priority queue whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of {@code c} cannot be
219 >     *         compared to one another according to {@code c}'s
220 >     *         ordering
221 >     * @throws NullPointerException if the specified priority queue or any
222 >     *         of its elements are null
223       */
224 <    private void fillFromSorted(Collection<? extends E> c) {
225 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
226 <            queue[++size] = i.next();
224 >    public PriorityQueue(PriorityQueue<? extends E> c) {
225 >        this.comparator = (Comparator<? super E>) c.comparator();
226 >        initFromPriorityQueue(c);
227      }
228  
146
229      /**
230 <     * Initially fill elements of the queue array that is
231 <     * not to our knowledge sorted, so we must add them
232 <     * one by one.
230 >     * Creates a {@code PriorityQueue} containing the elements in the
231 >     * specified sorted set.   This priority queue will be ordered
232 >     * according to the same ordering as the given sorted set.
233 >     *
234 >     * @param  c the sorted set whose elements are to be placed
235 >     *         into this priority queue
236 >     * @throws ClassCastException if elements of the specified sorted
237 >     *         set cannot be compared to one another according to the
238 >     *         sorted set's ordering
239 >     * @throws NullPointerException if the specified sorted set or any
240 >     *         of its elements are null
241       */
242 <    private void fillFromUnsorted(Collection<? extends E> c) {
243 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
244 <            add(i.next());
242 >    public PriorityQueue(SortedSet<? extends E> c) {
243 >        this.comparator = (Comparator<? super E>) c.comparator();
244 >        initElementsFromCollection(c);
245      }
246  
247 <    /**
248 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
249 <     * specified collection.  The priority queue has an initial
250 <     * capacity of 110% of the size of the specified collection or 1
251 <     * if the collection is empty.  If the specified collection is an
252 <     * instance of a {@link java.util.SortedSet} or is another
253 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
254 <     * according to the same comparator, or according to its elements'
255 <     * natural order if the collection is sorted according to its
166 <     * elements' natural order.  Otherwise, the priority queue is
167 <     * ordered according to its elements' natural order.
168 <     *
169 <     * @param c the collection whose elements are to be placed
170 <     *        into this priority queue.
171 <     * @throws ClassCastException if elements of the specified collection
172 <     *         cannot be compared to one another according to the priority
173 <     *         queue's ordering.
174 <     * @throws NullPointerException if <tt>c</tt> or any element within it
175 <     * is <tt>null</tt>
176 <     */
177 <    public PriorityQueue(Collection<? extends E> c) {
178 <        initializeArray(c);
179 <        if (c instanceof SortedSet) {
180 <            // @fixme double-cast workaround for compiler
181 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
182 <            comparator = (Comparator<? super E>)s.comparator();
183 <            fillFromSorted(s);
184 <        } else if (c instanceof PriorityQueue) {
185 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
186 <            comparator = (Comparator<? super E>)s.comparator();
187 <            fillFromSorted(s);
247 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
248 >    private static Object[] ensureNonEmpty(Object[] es) {
249 >        return (es.length > 0) ? es : new Object[1];
250 >    }
251 >
252 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
253 >        if (c.getClass() == PriorityQueue.class) {
254 >            this.queue = ensureNonEmpty(c.toArray());
255 >            this.size = c.size();
256          } else {
257 <            comparator = null;
190 <            fillFromUnsorted(c);
257 >            initFromCollection(c);
258          }
259      }
260  
261 +    private void initElementsFromCollection(Collection<? extends E> c) {
262 +        Object[] es = c.toArray();
263 +        int len = es.length;
264 +        // If c.toArray incorrectly doesn't return Object[], copy it.
265 +        if (es.getClass() != Object[].class)
266 +            es = Arrays.copyOf(es, len, Object[].class);
267 +        if (len == 1 || this.comparator != null)
268 +            for (Object e : es)
269 +                if (e == null)
270 +                    throw new NullPointerException();
271 +        this.queue = ensureNonEmpty(es);
272 +        this.size = len;
273 +    }
274 +
275      /**
276 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
196 <     * specified collection.  The priority queue has an initial
197 <     * capacity of 110% of the size of the specified collection or 1
198 <     * if the collection is empty.  This priority queue will be sorted
199 <     * according to the same comparator as the given collection, or
200 <     * according to its elements' natural order if the collection is
201 <     * sorted according to its elements' natural order.
276 >     * Initializes queue array with elements from the given Collection.
277       *
278 <     * @param c the collection whose elements are to be placed
204 <     *        into this priority queue.
205 <     * @throws ClassCastException if elements of the specified collection
206 <     *         cannot be compared to one another according to the priority
207 <     *         queue's ordering.
208 <     * @throws NullPointerException if <tt>c</tt> or any element within it
209 <     * is <tt>null</tt>
278 >     * @param c the collection
279       */
280 <    public PriorityQueue(PriorityQueue<? extends E> c) {
281 <        initializeArray(c);
282 <        comparator = (Comparator<? super E>)c.comparator();
214 <        fillFromSorted(c);
280 >    private void initFromCollection(Collection<? extends E> c) {
281 >        initElementsFromCollection(c);
282 >        heapify();
283      }
284  
285      /**
286 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
219 <     * specified collection.  The priority queue has an initial
220 <     * capacity of 110% of the size of the specified collection or 1
221 <     * if the collection is empty.  This priority queue will be sorted
222 <     * according to the same comparator as the given collection, or
223 <     * according to its elements' natural order if the collection is
224 <     * sorted according to its elements' natural order.
286 >     * Increases the capacity of the array.
287       *
288 <     * @param c the collection whose elements are to be placed
227 <     *        into this priority queue.
228 <     * @throws ClassCastException if elements of the specified collection
229 <     *         cannot be compared to one another according to the priority
230 <     *         queue's ordering.
231 <     * @throws NullPointerException if <tt>c</tt> or any element within it
232 <     * is <tt>null</tt>
288 >     * @param minCapacity the desired minimum capacity
289       */
290 <    public PriorityQueue(SortedSet<? extends E> c) {
291 <        initializeArray(c);
292 <        comparator = (Comparator<? super E>)c.comparator();
293 <        fillFromSorted(c);
290 >    private void grow(int minCapacity) {
291 >        int oldCapacity = queue.length;
292 >        // Double size if small; else grow by 50%
293 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
294 >                minCapacity - oldCapacity, /* minimum growth */
295 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
296 >                                           /* preferred growth */);
297 >        queue = Arrays.copyOf(queue, newCapacity);
298      }
299  
300      /**
301 <     * Resize array, if necessary, to be able to hold given index
301 >     * Inserts the specified element into this priority queue.
302 >     *
303 >     * @return {@code true} (as specified by {@link Collection#add})
304 >     * @throws ClassCastException if the specified element cannot be
305 >     *         compared with elements currently in this priority queue
306 >     *         according to the priority queue's ordering
307 >     * @throws NullPointerException if the specified element is null
308       */
309 <    private void grow(int index) {
310 <        int newlen = queue.length;
245 <        if (index < newlen) // don't need to grow
246 <            return;
247 <        if (index == Integer.MAX_VALUE)
248 <            throw new OutOfMemoryError();
249 <        while (newlen <= index) {
250 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
251 <                newlen = Integer.MAX_VALUE;
252 <            else
253 <                newlen <<= 2;
254 <        }
255 <        Object[] newQueue = new Object[newlen];
256 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
257 <        queue = newQueue;
309 >    public boolean add(E e) {
310 >        return offer(e);
311      }
259            
260    // Queue Methods
261
262
312  
313      /**
314 <     * Add the specified element to this priority queue.
314 >     * Inserts the specified element into this priority queue.
315       *
316 <     * @return <tt>true</tt>
317 <     * @throws ClassCastException if the specified element cannot be compared
318 <     * with elements currently in the priority queue according
319 <     * to the priority queue's ordering.
320 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
316 >     * @return {@code true} (as specified by {@link Queue#offer})
317 >     * @throws ClassCastException if the specified element cannot be
318 >     *         compared with elements currently in this priority queue
319 >     *         according to the priority queue's ordering
320 >     * @throws NullPointerException if the specified element is null
321       */
322 <    public boolean offer(E o) {
323 <        if (o == null)
322 >    public boolean offer(E e) {
323 >        if (e == null)
324              throw new NullPointerException();
325          modCount++;
326 <        ++size;
327 <
328 <        // Grow backing store if necessary
329 <        if (size >= queue.length)
330 <            grow(size);
282 <
283 <        queue[size] = o;
284 <        fixUp(size);
326 >        int i = size;
327 >        if (i >= queue.length)
328 >            grow(i + 1);
329 >        siftUp(i, e);
330 >        size = i + 1;
331          return true;
332      }
333  
334 <    public E poll() {
335 <        if (size == 0)
290 <            return null;
291 <        return (E) remove(1);
334 >    public E peek() {
335 >        return (E) queue[0];
336      }
337  
338 <    public E peek() {
339 <        return (E) queue[1];
338 >    private int indexOf(Object o) {
339 >        if (o != null) {
340 >            final Object[] es = queue;
341 >            for (int i = 0, n = size; i < n; i++)
342 >                if (o.equals(es[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346      }
347  
348 <    // Collection Methods - the first two override to update docs
348 >    /**
349 >     * Removes a single instance of the specified element from this queue,
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354 >     * result of the call).
355 >     *
356 >     * @param o element to be removed from this queue, if present
357 >     * @return {@code true} if this queue changed as a result of the call
358 >     */
359 >    public boolean remove(Object o) {
360 >        int i = indexOf(o);
361 >        if (i == -1)
362 >            return false;
363 >        else {
364 >            removeAt(i);
365 >            return true;
366 >        }
367 >    }
368  
369      /**
370 <     * Adds the specified element to this queue.
302 <     * @return <tt>true</tt> (as per the general contract of
303 <     * <tt>Collection.add</tt>).
370 >     * Identity-based version for use in Itr.remove.
371       *
372 <     * @throws NullPointerException {@inheritDoc}
373 <     * @throws ClassCastException if the specified element cannot be compared
374 <     * with elements currently in the priority queue according
375 <     * to the priority queue's ordering.
376 <     */
377 <    public boolean add(E o) {
378 <        return super.add(o);
379 <    }
380 <
381 <  
315 <    /**
316 <     * Adds all of the elements in the specified collection to this queue.
317 <     * The behavior of this operation is undefined if
318 <     * the specified collection is modified while the operation is in
319 <     * progress.  (This implies that the behavior of this call is undefined if
320 <     * the specified collection is this queue, and this queue is nonempty.)
321 <     * <p>
322 <     * This implementation iterates over the specified collection, and adds
323 <     * each object returned by the iterator to this collection, in turn.
324 <     * @throws NullPointerException {@inheritDoc}
325 <     * @throws ClassCastException if any element cannot be compared
326 <     * with elements currently in the priority queue according
327 <     * to the priority queue's ordering.
328 <     */
329 <    public boolean addAll(Collection<? extends E> c) {
330 <        return super.addAll(c);
372 >     * @param o element to be removed from this queue, if present
373 >     */
374 >    void removeEq(Object o) {
375 >        final Object[] es = queue;
376 >        for (int i = 0, n = size; i < n; i++) {
377 >            if (o == es[i]) {
378 >                removeAt(i);
379 >                break;
380 >            }
381 >        }
382      }
383  
384 +    /**
385 +     * Returns {@code true} if this queue contains the specified element.
386 +     * More formally, returns {@code true} if and only if this queue contains
387 +     * at least one element {@code e} such that {@code o.equals(e)}.
388 +     *
389 +     * @param o object to be checked for containment in this queue
390 +     * @return {@code true} if this queue contains the specified element
391 +     */
392 +    public boolean contains(Object o) {
393 +        return indexOf(o) >= 0;
394 +    }
395  
396 < /**
397 <     * Removes a single instance of the specified element from this
398 <     * queue, if it is present.  More formally,
399 <     * removes an element <tt>e</tt> such that <tt>(o==null ? e==null :
400 <     * o.equals(e))</tt>, if the queue contains one or more such
401 <     * elements.  Returns <tt>true</tt> if the queue contained the
402 <     * specified element (or equivalently, if the queue changed as a
341 <     * result of the call).
396 >    /**
397 >     * Returns an array containing all of the elements in this queue.
398 >     * The elements are in no particular order.
399 >     *
400 >     * <p>The returned array will be "safe" in that no references to it are
401 >     * maintained by this queue.  (In other words, this method must allocate
402 >     * a new array).  The caller is thus free to modify the returned array.
403       *
404 <     * <p>This implementation iterates over the queue looking for the
405 <     * specified element.  If it finds the element, it removes the element
345 <     * from the queue using the iterator's remove method.<p>
404 >     * <p>This method acts as bridge between array-based and collection-based
405 >     * APIs.
406       *
407 +     * @return an array containing all of the elements in this queue
408       */
409 <    public boolean remove(Object o) {
410 <        if (o == null)
411 <            return false;
409 >    public Object[] toArray() {
410 >        return Arrays.copyOf(queue, size);
411 >    }
412  
413 <        if (comparator == null) {
414 <            for (int i = 1; i <= size; i++) {
415 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
416 <                    remove(i);
417 <                    return true;
418 <                }
419 <            }
420 <        } else {
421 <            for (int i = 1; i <= size; i++) {
422 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
423 <                    remove(i);
424 <                    return true;
425 <                }
426 <            }
427 <        }
428 <        return false;
413 >    /**
414 >     * Returns an array containing all of the elements in this queue; the
415 >     * runtime type of the returned array is that of the specified array.
416 >     * The returned array elements are in no particular order.
417 >     * If the queue fits in the specified array, it is returned therein.
418 >     * Otherwise, a new array is allocated with the runtime type of the
419 >     * specified array and the size of this queue.
420 >     *
421 >     * <p>If the queue fits in the specified array with room to spare
422 >     * (i.e., the array has more elements than the queue), the element in
423 >     * the array immediately following the end of the collection is set to
424 >     * {@code null}.
425 >     *
426 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
427 >     * array-based and collection-based APIs.  Further, this method allows
428 >     * precise control over the runtime type of the output array, and may,
429 >     * under certain circumstances, be used to save allocation costs.
430 >     *
431 >     * <p>Suppose {@code x} is a queue known to contain only strings.
432 >     * The following code can be used to dump the queue into a newly
433 >     * allocated array of {@code String}:
434 >     *
435 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436 >     *
437 >     * Note that {@code toArray(new Object[0])} is identical in function to
438 >     * {@code toArray()}.
439 >     *
440 >     * @param a the array into which the elements of the queue are to
441 >     *          be stored, if it is big enough; otherwise, a new array of the
442 >     *          same runtime type is allocated for this purpose.
443 >     * @return an array containing all of the elements in this queue
444 >     * @throws ArrayStoreException if the runtime type of the specified array
445 >     *         is not a supertype of the runtime type of every element in
446 >     *         this queue
447 >     * @throws NullPointerException if the specified array is null
448 >     */
449 >    public <T> T[] toArray(T[] a) {
450 >        final int size = this.size;
451 >        if (a.length < size)
452 >            // Make a new array of a's runtime type, but my contents:
453 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
454 >        System.arraycopy(queue, 0, a, 0, size);
455 >        if (a.length > size)
456 >            a[size] = null;
457 >        return a;
458      }
459  
460      /**
461       * Returns an iterator over the elements in this queue. The iterator
462       * does not return the elements in any particular order.
463       *
464 <     * @return an iterator over the elements in this queue.
464 >     * @return an iterator over the elements in this queue
465       */
466      public Iterator<E> iterator() {
467          return new Itr();
468      }
469  
470 <    private class Itr implements Iterator<E> {
470 >    private final class Itr implements Iterator<E> {
471          /**
472           * Index (into queue array) of element to be returned by
473           * subsequent call to next.
474           */
475 <        private int cursor = 1;
475 >        private int cursor;
476  
477          /**
478 <         * Index of element returned by most recent call to next or
479 <         * previous.  Reset to 0 if this element is deleted by a call
480 <         * to remove.
478 >         * Index of element returned by most recent call to next,
479 >         * unless that element came from the forgetMeNot list.
480 >         * Set to -1 if element is deleted by a call to remove.
481           */
482 <        private int lastRet = 0;
482 >        private int lastRet = -1;
483 >
484 >        /**
485 >         * A queue of elements that were moved from the unvisited portion of
486 >         * the heap into the visited portion as a result of "unlucky" element
487 >         * removals during the iteration.  (Unlucky element removals are those
488 >         * that require a siftup instead of a siftdown.)  We must visit all of
489 >         * the elements in this list to complete the iteration.  We do this
490 >         * after we've completed the "normal" iteration.
491 >         *
492 >         * We expect that most iterations, even those involving removals,
493 >         * will not need to store elements in this field.
494 >         */
495 >        private ArrayDeque<E> forgetMeNot;
496 >
497 >        /**
498 >         * Element returned by the most recent call to next iff that
499 >         * element was drawn from the forgetMeNot list.
500 >         */
501 >        private E lastRetElt;
502  
503          /**
504           * The modCount value that the iterator believes that the backing
505 <         * List should have.  If this expectation is violated, the iterator
505 >         * Queue should have.  If this expectation is violated, the iterator
506           * has detected concurrent modification.
507           */
508          private int expectedModCount = modCount;
509  
510 +        Itr() {}                        // prevent access constructor creation
511 +
512          public boolean hasNext() {
513 <            return cursor <= size;
513 >            return cursor < size ||
514 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
515          }
516  
517          public E next() {
518 <            checkForComodification();
519 <            if (cursor > size)
520 <                throw new NoSuchElementException();
521 <            E result = (E) queue[cursor];
522 <            lastRet = cursor++;
523 <            return result;
518 >            if (expectedModCount != modCount)
519 >                throw new ConcurrentModificationException();
520 >            if (cursor < size)
521 >                return (E) queue[lastRet = cursor++];
522 >            if (forgetMeNot != null) {
523 >                lastRet = -1;
524 >                lastRetElt = forgetMeNot.poll();
525 >                if (lastRetElt != null)
526 >                    return lastRetElt;
527 >            }
528 >            throw new NoSuchElementException();
529          }
530  
531          public void remove() {
532 <            if (lastRet == 0)
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (lastRet != -1) {
535 >                E moved = PriorityQueue.this.removeAt(lastRet);
536 >                lastRet = -1;
537 >                if (moved == null)
538 >                    cursor--;
539 >                else {
540 >                    if (forgetMeNot == null)
541 >                        forgetMeNot = new ArrayDeque<>();
542 >                    forgetMeNot.add(moved);
543 >                }
544 >            } else if (lastRetElt != null) {
545 >                PriorityQueue.this.removeEq(lastRetElt);
546 >                lastRetElt = null;
547 >            } else {
548                  throw new IllegalStateException();
549 <            checkForComodification();
418 <
419 <            PriorityQueue.this.remove(lastRet);
420 <            if (lastRet < cursor)
421 <                cursor--;
422 <            lastRet = 0;
549 >            }
550              expectedModCount = modCount;
551          }
425
426        final void checkForComodification() {
427            if (modCount != expectedModCount)
428                throw new ConcurrentModificationException();
429        }
552      }
553  
554      public int size() {
# Line 434 | Line 556 | public class PriorityQueue<E> extends Ab
556      }
557  
558      /**
559 <     * Remove all elements from the priority queue.
559 >     * Removes all of the elements from this priority queue.
560 >     * The queue will be empty after this call returns.
561       */
562      public void clear() {
563          modCount++;
564 +        final Object[] es = queue;
565 +        for (int i = 0, n = size; i < n; i++)
566 +            es[i] = null;
567 +        size = 0;
568 +    }
569  
570 <        // Null out element references to prevent memory leak
571 <        for (int i=1; i<=size; i++)
572 <            queue[i] = null;
570 >    public E poll() {
571 >        final Object[] es;
572 >        final E result;
573  
574 <        size = 0;
574 >        if ((result = (E) ((es = queue)[0])) != null) {
575 >            modCount++;
576 >            final int n;
577 >            final E x = (E) es[(n = --size)];
578 >            es[n] = null;
579 >            if (n > 0) {
580 >                final Comparator<? super E> cmp;
581 >                if ((cmp = comparator) == null)
582 >                    siftDownComparable(0, x, es, n);
583 >                else
584 >                    siftDownUsingComparator(0, x, es, n, cmp);
585 >            }
586 >        }
587 >        return result;
588      }
589  
590      /**
591 <     * Removes and returns the ith element from queue.  Recall
451 <     * that queue is one-based, so 1 <= i <= size.
591 >     * Removes the ith element from queue.
592       *
593 <     * XXX: Could further special-case i==size, but is it worth it?
594 <     * XXX: Could special-case i==0, but is it worth it?
595 <     */
596 <    private E remove(int i) {
597 <        assert i <= size;
593 >     * Normally this method leaves the elements at up to i-1,
594 >     * inclusive, untouched.  Under these circumstances, it returns
595 >     * null.  Occasionally, in order to maintain the heap invariant,
596 >     * it must swap a later element of the list with one earlier than
597 >     * i.  Under these circumstances, this method returns the element
598 >     * that was previously at the end of the list and is now at some
599 >     * position before i. This fact is used by iterator.remove so as to
600 >     * avoid missing traversing elements.
601 >     */
602 >    E removeAt(int i) {
603 >        // assert i >= 0 && i < size;
604 >        final Object[] es = queue;
605          modCount++;
606 <
607 <        E result = (E) queue[i];
608 <        queue[i] = queue[size];
609 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
610 <        if (i <= size)
611 <            fixDown(i);
612 <        return result;
606 >        int s = --size;
607 >        if (s == i) // removed last element
608 >            es[i] = null;
609 >        else {
610 >            E moved = (E) es[s];
611 >            es[s] = null;
612 >            siftDown(i, moved);
613 >            if (es[i] == moved) {
614 >                siftUp(i, moved);
615 >                if (es[i] != moved)
616 >                    return moved;
617 >            }
618 >        }
619 >        return null;
620      }
621  
622      /**
623 <     * Establishes the heap invariant (described above) assuming the heap
624 <     * satisfies the invariant except possibly for the leaf-node indexed by k
625 <     * (which may have a nextExecutionTime less than its parent's).
626 <     *
627 <     * This method functions by "promoting" queue[k] up the hierarchy
628 <     * (by swapping it with its parent) repeatedly until queue[k]
629 <     * is greater than or equal to its parent.
630 <     */
631 <    private void fixUp(int k) {
632 <        if (comparator == null) {
633 <            while (k > 1) {
634 <                int j = k >> 1;
635 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
636 <                    break;
637 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
638 <                k = j;
639 <            }
640 <        } else {
641 <            while (k > 1) {
642 <                int j = k >> 1;
643 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
644 <                    break;
645 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
646 <                k = j;
647 <            }
623 >     * Inserts item x at position k, maintaining heap invariant by
624 >     * promoting x up the tree until it is greater than or equal to
625 >     * its parent, or is the root.
626 >     *
627 >     * To simplify and speed up coercions and comparisons, the
628 >     * Comparable and Comparator versions are separated into different
629 >     * methods that are otherwise identical. (Similarly for siftDown.)
630 >     *
631 >     * @param k the position to fill
632 >     * @param x the item to insert
633 >     */
634 >    private void siftUp(int k, E x) {
635 >        if (comparator != null)
636 >            siftUpUsingComparator(k, x, queue, comparator);
637 >        else
638 >            siftUpComparable(k, x, queue);
639 >    }
640 >
641 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
642 >        Comparable<? super T> key = (Comparable<? super T>) x;
643 >        while (k > 0) {
644 >            int parent = (k - 1) >>> 1;
645 >            Object e = es[parent];
646 >            if (key.compareTo((T) e) >= 0)
647 >                break;
648 >            es[k] = e;
649 >            k = parent;
650          }
651 +        es[k] = key;
652 +    }
653 +
654 +    private static <T> void siftUpUsingComparator(
655 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
656 +        while (k > 0) {
657 +            int parent = (k - 1) >>> 1;
658 +            Object e = es[parent];
659 +            if (cmp.compare(x, (T) e) >= 0)
660 +                break;
661 +            es[k] = e;
662 +            k = parent;
663 +        }
664 +        es[k] = x;
665      }
666  
667      /**
668 <     * Establishes the heap invariant (described above) in the subtree
669 <     * rooted at k, which is assumed to satisfy the heap invariant except
670 <     * possibly for node k itself (which may be greater than its children).
671 <     *
672 <     * This method functions by "demoting" queue[k] down the hierarchy
673 <     * (by swapping it with its smaller child) repeatedly until queue[k]
674 <     * is less than or equal to its children.
675 <     */
676 <    private void fixDown(int k) {
677 <        int j;
678 <        if (comparator == null) {
679 <            while ((j = k << 1) <= size) {
680 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
681 <                    j++; // j indexes smallest kid
682 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
683 <                    break;
684 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
685 <                k = j;
686 <            }
687 <        } else {
688 <            while ((j = k << 1) <= size) {
689 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
690 <                    j++; // j indexes smallest kid
691 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
692 <                    break;
693 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
694 <                k = j;
695 <            }
668 >     * Inserts item x at position k, maintaining heap invariant by
669 >     * demoting x down the tree repeatedly until it is less than or
670 >     * equal to its children or is a leaf.
671 >     *
672 >     * @param k the position to fill
673 >     * @param x the item to insert
674 >     */
675 >    private void siftDown(int k, E x) {
676 >        if (comparator != null)
677 >            siftDownUsingComparator(k, x, queue, size, comparator);
678 >        else
679 >            siftDownComparable(k, x, queue, size);
680 >    }
681 >
682 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
683 >        // assert n > 0;
684 >        Comparable<? super T> key = (Comparable<? super T>)x;
685 >        int half = n >>> 1;           // loop while a non-leaf
686 >        while (k < half) {
687 >            int child = (k << 1) + 1; // assume left child is least
688 >            Object c = es[child];
689 >            int right = child + 1;
690 >            if (right < n &&
691 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
692 >                c = es[child = right];
693 >            if (key.compareTo((T) c) <= 0)
694 >                break;
695 >            es[k] = c;
696 >            k = child;
697          }
698 +        es[k] = key;
699      }
700  
701 +    private static <T> void siftDownUsingComparator(
702 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
703 +        // assert n > 0;
704 +        int half = n >>> 1;
705 +        while (k < half) {
706 +            int child = (k << 1) + 1;
707 +            Object c = es[child];
708 +            int right = child + 1;
709 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
710 +                c = es[child = right];
711 +            if (cmp.compare(x, (T) c) <= 0)
712 +                break;
713 +            es[k] = c;
714 +            k = child;
715 +        }
716 +        es[k] = x;
717 +    }
718 +
719 +    /**
720 +     * Establishes the heap invariant (described above) in the entire tree,
721 +     * assuming nothing about the order of the elements prior to the call.
722 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
723 +     */
724 +    private void heapify() {
725 +        final Object[] es = queue;
726 +        int n = size, i = (n >>> 1) - 1;
727 +        final Comparator<? super E> cmp;
728 +        if ((cmp = comparator) == null)
729 +            for (; i >= 0; i--)
730 +                siftDownComparable(i, (E) es[i], es, n);
731 +        else
732 +            for (; i >= 0; i--)
733 +                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
734 +    }
735  
736      /**
737 <     * Returns the comparator used to order this collection, or <tt>null</tt>
738 <     * if this collection is sorted according to its elements natural ordering
739 <     * (using <tt>Comparable</tt>).
737 >     * Returns the comparator used to order the elements in this
738 >     * queue, or {@code null} if this queue is sorted according to
739 >     * the {@linkplain Comparable natural ordering} of its elements.
740       *
741 <     * @return the comparator used to order this collection, or <tt>null</tt>
742 <     * if this collection is sorted according to its elements natural ordering.
741 >     * @return the comparator used to order this queue, or
742 >     *         {@code null} if this queue is sorted according to the
743 >     *         natural ordering of its elements
744       */
745      public Comparator<? super E> comparator() {
746          return comparator;
747      }
748  
749      /**
750 <     * Save the state of the instance to a stream (that
544 <     * is, serialize it).
750 >     * Saves this queue to a stream (that is, serializes it).
751       *
546     * @serialData The length of the array backing the instance is
547     * emitted (int), followed by all of its elements (each an
548     * <tt>Object</tt>) in the proper order.
752       * @param s the stream
753 +     * @throws java.io.IOException if an I/O error occurs
754 +     * @serialData The length of the array backing the instance is
755 +     *             emitted (int), followed by all of its elements
756 +     *             (each an {@code Object}) in the proper order.
757       */
758      private void writeObject(java.io.ObjectOutputStream s)
759 <        throws java.io.IOException{
759 >        throws java.io.IOException {
760          // Write out element count, and any hidden stuff
761          s.defaultWriteObject();
762  
763 <        // Write out array length
764 <        s.writeInt(queue.length);
763 >        // Write out array length, for compatibility with 1.5 version
764 >        s.writeInt(Math.max(2, size + 1));
765  
766 <        // Write out all elements in the proper order.
767 <        for (int i=0; i<size; i++)
768 <            s.writeObject(queue[i]);
766 >        // Write out all elements in the "proper order".
767 >        final Object[] es = queue;
768 >        for (int i = 0, n = size; i < n; i++)
769 >            s.writeObject(es[i]);
770      }
771  
772      /**
773 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
774 <     * deserialize it).
773 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
774 >     * (that is, deserializes it).
775 >     *
776       * @param s the stream
777 +     * @throws ClassNotFoundException if the class of a serialized object
778 +     *         could not be found
779 +     * @throws java.io.IOException if an I/O error occurs
780       */
781      private void readObject(java.io.ObjectInputStream s)
782          throws java.io.IOException, ClassNotFoundException {
783          // Read in size, and any hidden stuff
784          s.defaultReadObject();
785  
786 <        // Read in array length and allocate array
787 <        int arrayLength = s.readInt();
788 <        queue = new Object[arrayLength];
789 <
790 <        // Read in all elements in the proper order.
791 <        for (int i=0; i<size; i++)
792 <            queue[i] = s.readObject();
786 >        // Read in (and discard) array length
787 >        s.readInt();
788 >
789 >        jsr166.Platform.checkArray(s, Object[].class, size);
790 >        final Object[] es = queue = new Object[Math.max(size, 1)];
791 >
792 >        // Read in all elements.
793 >        for (int i = 0, n = size; i < n; i++)
794 >            es[i] = s.readObject();
795 >
796 >        // Elements are guaranteed to be in "proper order", but the
797 >        // spec has never explained what that might be.
798 >        heapify();
799      }
800  
801 < }
801 >    /**
802 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 >     * queue. The spliterator does not traverse elements in any particular order
805 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 >     *
807 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 >     * Overriding implementations should document the reporting of additional
810 >     * characteristic values.
811 >     *
812 >     * @return a {@code Spliterator} over the elements in this queue
813 >     * @since 1.8
814 >     */
815 >    public final Spliterator<E> spliterator() {
816 >        return new PriorityQueueSpliterator(0, -1, 0);
817 >    }
818 >
819 >    final class PriorityQueueSpliterator implements Spliterator<E> {
820 >        private int index;            // current index, modified on advance/split
821 >        private int fence;            // -1 until first use
822 >        private int expectedModCount; // initialized when fence set
823  
824 +        /** Creates new spliterator covering the given range. */
825 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
826 +            this.index = origin;
827 +            this.fence = fence;
828 +            this.expectedModCount = expectedModCount;
829 +        }
830 +
831 +        private int getFence() { // initialize fence to size on first use
832 +            int hi;
833 +            if ((hi = fence) < 0) {
834 +                expectedModCount = modCount;
835 +                hi = fence = size;
836 +            }
837 +            return hi;
838 +        }
839 +
840 +        public PriorityQueueSpliterator trySplit() {
841 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
842 +            return (lo >= mid) ? null :
843 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
844 +        }
845 +
846 +        public void forEachRemaining(Consumer<? super E> action) {
847 +            if (action == null)
848 +                throw new NullPointerException();
849 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
850 +            final Object[] es = queue;
851 +            int i, hi; E e;
852 +            for (i = index, index = hi = fence; i < hi; i++) {
853 +                if ((e = (E) es[i]) == null)
854 +                    break;      // must be CME
855 +                action.accept(e);
856 +            }
857 +            if (modCount != expectedModCount)
858 +                throw new ConcurrentModificationException();
859 +        }
860 +
861 +        public boolean tryAdvance(Consumer<? super E> action) {
862 +            if (action == null)
863 +                throw new NullPointerException();
864 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 +            int i;
866 +            if ((i = index) < fence) {
867 +                index = i + 1;
868 +                E e;
869 +                if ((e = (E) queue[i]) == null
870 +                    || modCount != expectedModCount)
871 +                    throw new ConcurrentModificationException();
872 +                action.accept(e);
873 +                return true;
874 +            }
875 +            return false;
876 +        }
877 +
878 +        public long estimateSize() {
879 +            return getFence() - index;
880 +        }
881 +
882 +        public int characteristics() {
883 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884 +        }
885 +    }
886 +
887 +    /**
888 +     * @throws NullPointerException {@inheritDoc}
889 +     */
890 +    public boolean removeIf(Predicate<? super E> filter) {
891 +        Objects.requireNonNull(filter);
892 +        return bulkRemove(filter);
893 +    }
894 +
895 +    /**
896 +     * @throws NullPointerException {@inheritDoc}
897 +     */
898 +    public boolean removeAll(Collection<?> c) {
899 +        Objects.requireNonNull(c);
900 +        return bulkRemove(e -> c.contains(e));
901 +    }
902 +
903 +    /**
904 +     * @throws NullPointerException {@inheritDoc}
905 +     */
906 +    public boolean retainAll(Collection<?> c) {
907 +        Objects.requireNonNull(c);
908 +        return bulkRemove(e -> !c.contains(e));
909 +    }
910 +
911 +    // A tiny bit set implementation
912 +
913 +    private static long[] nBits(int n) {
914 +        return new long[((n - 1) >> 6) + 1];
915 +    }
916 +    private static void setBit(long[] bits, int i) {
917 +        bits[i >> 6] |= 1L << i;
918 +    }
919 +    private static boolean isClear(long[] bits, int i) {
920 +        return (bits[i >> 6] & (1L << i)) == 0;
921 +    }
922 +
923 +    /** Implementation of bulk remove methods. */
924 +    private boolean bulkRemove(Predicate<? super E> filter) {
925 +        final int expectedModCount = ++modCount;
926 +        final Object[] es = queue;
927 +        final int end = size;
928 +        int i;
929 +        // Optimize for initial run of survivors
930 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
931 +            ;
932 +        if (i >= end) {
933 +            if (modCount != expectedModCount)
934 +                throw new ConcurrentModificationException();
935 +            return false;
936 +        }
937 +        // Tolerate predicates that reentrantly access the collection for
938 +        // read (but writers still get CME), so traverse once to find
939 +        // elements to delete, a second pass to physically expunge.
940 +        final int beg = i;
941 +        final long[] deathRow = nBits(end - beg);
942 +        deathRow[0] = 1L;   // set bit 0
943 +        for (i = beg + 1; i < end; i++)
944 +            if (filter.test((E) es[i]))
945 +                setBit(deathRow, i - beg);
946 +        if (modCount != expectedModCount)
947 +            throw new ConcurrentModificationException();
948 +        int w = beg;
949 +        for (i = beg; i < end; i++)
950 +            if (isClear(deathRow, i - beg))
951 +                es[w++] = es[i];
952 +        for (i = size = w; i < end; i++)
953 +            es[i] = null;
954 +        heapify();
955 +        return true;
956 +    }
957 +
958 +    /**
959 +     * @throws NullPointerException {@inheritDoc}
960 +     */
961 +    public void forEach(Consumer<? super E> action) {
962 +        Objects.requireNonNull(action);
963 +        final int expectedModCount = modCount;
964 +        final Object[] es = queue;
965 +        for (int i = 0, n = size; i < n; i++)
966 +            action.accept((E) es[i]);
967 +        if (expectedModCount != modCount)
968 +            throw new ConcurrentModificationException();
969 +    }
970 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines