ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.54 by jsr166, Thu Nov 24 03:44:57 2005 UTC vs.
Revision 1.55 by dl, Sun Nov 27 20:41:02 2005 UTC

# Line 68 | Line 68 | public class PriorityQueue<E> extends Ab
68      private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70      /**
71 <     * Priority queue represented as a balanced binary heap: the two children
72 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 <     * ordered by comparator, or by the elements' natural ordering, if
74 <     * comparator is null:  For each node n in the heap and each descendant d
75 <     * of n, n <= d.
76 <     *
77 <     * The element with the lowest value is in queue[1], assuming the queue is
78 <     * nonempty.  (A one-based array is used in preference to the traditional
79 <     * zero-based array to simplify parent and child calculations.)
80 <     *
81 <     * queue.length must be >= 2, even if size == 0.
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77       */
78      private transient Object[] queue;
79  
# Line 134 | Line 129 | public class PriorityQueue<E> extends Ab
129       */
130      public PriorityQueue(int initialCapacity,
131                           Comparator<? super E> comparator) {
132 +        // Note: This restriction of at least one is not actually needed,
133 +        // but continues for 1.5 compatibility
134          if (initialCapacity < 1)
135              throw new IllegalArgumentException();
136 <        this.queue = new Object[initialCapacity + 1];
136 >        this.queue = new Object[initialCapacity];
137          this.comparator = comparator;
138      }
139 <
143 <    /**
144 <     * Common code to initialize underlying queue array across
145 <     * constructors below.
146 <     */
147 <    private void initializeArray(Collection<? extends E> c) {
148 <        int sz = c.size();
149 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 <                                            Integer.MAX_VALUE - 1);
151 <        if (initialCapacity < 1)
152 <            initialCapacity = 1;
153 <
154 <        this.queue = new Object[initialCapacity + 1];
155 <    }
156 <
157 <    /**
158 <     * Initially fill elements of the queue array under the
159 <     * knowledge that it is sorted or is another PQ, in which
160 <     * case we can just place the elements in the order presented.
161 <     */
162 <    private void fillFromSorted(Collection<? extends E> c) {
163 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 <            int k = ++size;
165 <            if (k >= queue.length)
166 <                grow(k);
167 <            queue[k] = i.next();
168 <        }
169 <    }
170 <
171 <    /**
172 <     * Initially fill elements of the queue array that is not to our knowledge
173 <     * sorted, so we must rearrange the elements to guarantee the heap
174 <     * invariant.
175 <     */
176 <    private void fillFromUnsorted(Collection<? extends E> c) {
177 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 <            int k = ++size;
179 <            if (k >= queue.length)
180 <                grow(k);
181 <            queue[k] = i.next();
182 <        }
183 <        heapify();
184 <    }
185 <
139 >    
140      /**
141       * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 <     * specified collection.  The priority queue has an initial
189 <     * capacity of 110% of the size of the specified collection or 1
190 <     * if the collection is empty.  If the specified collection is an
142 >     * specified collection.   If the specified collection is an
143       * instance of a {@link java.util.SortedSet} or is another
144       * <tt>PriorityQueue</tt>, the priority queue will be ordered
145       * according to the same ordering.  Otherwise, this priority queue
# Line 202 | Line 154 | public class PriorityQueue<E> extends Ab
154       *         of its elements are null
155       */
156      public PriorityQueue(Collection<? extends E> c) {
157 <        initializeArray(c);
158 <        if (c instanceof SortedSet) {
159 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
160 <            comparator = (Comparator<? super E>)s.comparator();
161 <            fillFromSorted(s);
162 <        } else if (c instanceof PriorityQueue) {
163 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
164 <            comparator = (Comparator<? super E>)s.comparator();
213 <            fillFromSorted(s);
214 <        } else {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165              comparator = null;
166 <            fillFromUnsorted(c);
166 >            heapify();
167          }
168      }
169  
170      /**
171       * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 <     * specified priority queue.  The priority queue has an initial
223 <     * capacity of 110% of the size of the specified priority queue or
224 <     * 1 if the priority queue is empty.  This priority queue will be
172 >     * specified priority queue.  This priority queue will be
173       * ordered according to the same ordering as the given priority
174       * queue.
175       *
# Line 234 | Line 182 | public class PriorityQueue<E> extends Ab
182       *         of its elements are null
183       */
184      public PriorityQueue(PriorityQueue<? extends E> c) {
237        initializeArray(c);
185          comparator = (Comparator<? super E>)c.comparator();
186 <        fillFromSorted(c);
186 >        initFromCollection(c);
187      }
188  
189      /**
190       * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 <     * specified sorted set.  The priority queue has an initial
245 <     * capacity of 110% of the size of the specified sorted set or 1
246 <     * if the sorted set is empty.  This priority queue will be ordered
191 >     * specified sorted set.  This priority queue will be ordered
192       * according to the same ordering as the given sorted set.
193       *
194       * @param  c the sorted set whose elements are to be placed
# Line 255 | Line 200 | public class PriorityQueue<E> extends Ab
200       *         of its elements are null
201       */
202      public PriorityQueue(SortedSet<? extends E> c) {
258        initializeArray(c);
203          comparator = (Comparator<? super E>)c.comparator();
204 <        fillFromSorted(c);
204 >        initFromCollection(c);
205      }
206  
207      /**
208 <     * Resize array, if necessary, to be able to hold given index.
208 >     * Initialize queue array with elements from the given Collection.
209 >     * @param c the collection
210       */
211 <    private void grow(int index) {
212 <        int newlen = queue.length;
213 <        if (index < newlen) // don't need to grow
214 <            return;
215 <        if (index == Integer.MAX_VALUE)
211 >    private void initFromCollection(Collection<? extends E> c) {
212 >        Object[] a = c.toArray();
213 >        // If c.toArray incorrectly doesn't return Object[], copy it.
214 >        if (a.getClass() != Object[].class)
215 >            a = Arrays.copyOf(a, a.length, Object[].class);
216 >        queue = a;
217 >        size = a.length;
218 >    }        
219 >
220 >    /**
221 >     * Increases the capacity of the array.
222 >     *
223 >     * @param minCapacity the desired minimum capacity
224 >     */
225 >    private void grow(int minCapacity) {
226 >        if (minCapacity < 0) // overflow
227              throw new OutOfMemoryError();
228 <        while (newlen <= index) {
229 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
230 <                newlen = Integer.MAX_VALUE;
231 <            else
232 <                newlen <<= 1;
233 <        }
234 <        queue = Arrays.copyOf(queue, newlen);
228 >        int oldCapacity = queue.length;
229 >        // Double size if small; else grow by 50%
230 >        int newCapacity = ((oldCapacity < 64)?
231 >                           ((oldCapacity + 1) * 2):
232 >                           ((oldCapacity * 3) / 2));
233 >        if (newCapacity < minCapacity)
234 >            newCapacity = minCapacity;
235 >        queue = Arrays.copyOf(queue, newCapacity);
236      }
237  
238      /**
# Line 304 | Line 261 | public class PriorityQueue<E> extends Ab
261          if (e == null)
262              throw new NullPointerException();
263          modCount++;
264 <        ++size;
265 <
266 <        // Grow backing store if necessary
267 <        if (size >= queue.length)
268 <            grow(size);
269 <
270 <        queue[size] = e;
271 <        fixUp(size);
264 >        int i = size;
265 >        if (i >= queue.length)
266 >            grow(i + 1);
267 >        size = i + 1;
268 >        if (i == 0)
269 >            queue[0] = e;
270 >        else
271 >            siftUp(i, e);
272          return true;
273      }
274  
275      public E peek() {
276          if (size == 0)
277              return null;
278 <        return (E) queue[1];
278 >        return (E) queue[0];
279      }
280  
281      private int indexOf(Object o) {
282 <        if (o == null)
283 <            return -1;
284 <        for (int i = 1; i <= size; i++)
285 <            if (o.equals(queue[i]))
286 <                return i;
282 >        if (o != null) {
283 >            for (int i = 0; i < size; i++)
284 >                if (o.equals(queue[i]))
285 >                    return i;
286 >        }
287          return -1;
288      }
289  
# Line 350 | Line 307 | public class PriorityQueue<E> extends Ab
307          }
308      }
309  
310 +    /**
311 +     * Version of remove using reference equality, not equals.
312 +     * Needed by iterator.remove
313 +     *
314 +     * @param o element to be removed from this queue, if present
315 +     * @return <tt>true</tt> if removed.
316 +     */
317 +    boolean removeEq(Object o) {
318 +        for (int i = 0; i < size; i++) {
319 +            if (o == queue[i]) {
320 +                removeAt(i);
321 +                return true;
322 +            }
323 +        }
324 +        return false;
325 +    }
326 +
327      /**
328       * Returns <tt>true</tt> if this queue contains the specified element.
329       * More formally, returns <tt>true</tt> if and only if this queue contains
# Line 373 | Line 347 | public class PriorityQueue<E> extends Ab
347       * @return an array containing all of the elements in this queue.
348       */
349      public Object[] toArray() {
350 <        return Arrays.copyOfRange(queue, 1, size+1);
350 >        return Arrays.copyOf(queue, size);
351      }
352  
353      /**
# Line 403 | Line 377 | public class PriorityQueue<E> extends Ab
377      public <T> T[] toArray(T[] a) {
378          if (a.length < size)
379              // Make a new array of a's runtime type, but my contents:
380 <            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
381 <        System.arraycopy(queue, 1, a, 0, size);
380 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
381 >        System.arraycopy(queue, 0, a, 0, size);
382          if (a.length > size)
383              a[size] = null;
384          return a;
# Line 420 | Line 394 | public class PriorityQueue<E> extends Ab
394          return new Itr();
395      }
396  
397 <    private class Itr implements Iterator<E> {
424 <
397 >    private final class Itr implements Iterator<E> {
398          /**
399           * Index (into queue array) of element to be returned by
400           * subsequent call to next.
401           */
402 <        private int cursor = 1;
402 >        private int cursor = 0;
403  
404          /**
405           * Index of element returned by most recent call to next,
406           * unless that element came from the forgetMeNot list.
407 <         * Reset to 0 if element is deleted by a call to remove.
407 >         * Set to -1 if element is deleted by a call to remove.
408           */
409 <        private int lastRet = 0;
409 >        private int lastRet = -1;
410  
411          /**
412 <         * The modCount value that the iterator believes that the backing
440 <         * List should have.  If this expectation is violated, the iterator
441 <         * has detected concurrent modification.
442 <         */
443 <        private int expectedModCount = modCount;
444 <
445 <        /**
446 <         * A list of elements that were moved from the unvisited portion of
412 >         * A queue of elements that were moved from the unvisited portion of
413           * the heap into the visited portion as a result of "unlucky" element
414           * removals during the iteration.  (Unlucky element removals are those
415 <         * that require a fixup instead of a fixdown.)  We must visit all of
415 >         * that require a siftup instead of a siftdown.)  We must visit all of
416           * the elements in this list to complete the iteration.  We do this
417           * after we've completed the "normal" iteration.
418           *
419           * We expect that most iterations, even those involving removals,
420           * will not use need to store elements in this field.
421           */
422 <        private ArrayList<E> forgetMeNot = null;
422 >        private ArrayDeque<E> forgetMeNot = null;
423  
424          /**
425           * Element returned by the most recent call to next iff that
426           * element was drawn from the forgetMeNot list.
427           */
428 <        private Object lastRetElt = null;
428 >        private E lastRetElt = null;
429 >
430 >        /**
431 >         * The modCount value that the iterator believes that the backing
432 >         * List should have.  If this expectation is violated, the iterator
433 >         * has detected concurrent modification.
434 >         */
435 >        private int expectedModCount = modCount;
436  
437          public boolean hasNext() {
438 <            return cursor <= size || forgetMeNot != null;
438 >            return cursor < size ||
439 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
440          }
441  
442          public E next() {
443 <            checkForComodification();
444 <            E result;
445 <            if (cursor <= size) {
446 <                result = (E) queue[cursor];
447 <                lastRet = cursor++;
448 <            }
449 <            else if (forgetMeNot == null)
450 <                throw new NoSuchElementException();
451 <            else {
478 <                int remaining = forgetMeNot.size();
479 <                result = forgetMeNot.remove(remaining - 1);
480 <                if (remaining == 1)
481 <                    forgetMeNot = null;
482 <                lastRet = 0;
483 <                lastRetElt = result;
443 >            if (expectedModCount != modCount)
444 >                throw new ConcurrentModificationException();
445 >            if (cursor < size)
446 >                return (E) queue[lastRet = cursor++];
447 >            if (forgetMeNot != null) {
448 >                lastRet = -1;
449 >                lastRetElt = forgetMeNot.poll();
450 >                if (lastRetElt != null)
451 >                    return lastRetElt;
452              }
453 <            return result;
453 >            throw new NoSuchElementException();
454          }
455  
456          public void remove() {
457 <            checkForComodification();
458 <
459 <            if (lastRet != 0) {
457 >            if (expectedModCount != modCount)
458 >                throw new ConcurrentModificationException();
459 >            if (lastRet == -1 && lastRetElt == null)
460 >                throw new IllegalStateException();
461 >            if (lastRet != -1) {
462                  E moved = PriorityQueue.this.removeAt(lastRet);
463 <                lastRet = 0;
464 <                if (moved == null) {
463 >                lastRet = -1;
464 >                if (moved == null)
465                      cursor--;
466 <                } else {
466 >                else {
467                      if (forgetMeNot == null)
468 <                        forgetMeNot = new ArrayList<E>();
468 >                        forgetMeNot = new ArrayDeque<E>();
469                      forgetMeNot.add(moved);
470 <                }
501 <            } else if (lastRetElt != null) {
502 <                PriorityQueue.this.remove(lastRetElt);
503 <                lastRetElt = null;
470 >                }            
471              } else {
472 <                throw new IllegalStateException();
473 <            }
474 <
472 >                PriorityQueue.this.removeEq(lastRetElt);
473 >                lastRetElt = null;
474 >            }
475              expectedModCount = modCount;
476          }
477  
511        final void checkForComodification() {
512            if (modCount != expectedModCount)
513                throw new ConcurrentModificationException();
514        }
478      }
479  
480      public int size() {
# Line 524 | Line 487 | public class PriorityQueue<E> extends Ab
487       */
488      public void clear() {
489          modCount++;
490 <
528 <        // Null out element references to prevent memory leak
529 <        for (int i=1; i<=size; i++)
490 >        for (int i = 0; i < size; i++)
491              queue[i] = null;
531
492          size = 0;
493      }
494  
495      public E poll() {
496          if (size == 0)
497              return null;
498 +        int s = --size;
499          modCount++;
500 <
501 <        E result = (E) queue[1];
502 <        queue[1] = queue[size];
503 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
504 <        if (size > 1)
544 <            fixDown(1);
545 <
500 >        E result = (E)queue[0];
501 >        E x = (E)queue[s];
502 >        queue[s] = null;
503 >        if (s != 0)
504 >            siftDown(0, x);
505          return result;
506      }
507  
508      /**
509 <     * Removes and returns the ith element from queue.  (Recall that queue
551 <     * is one-based, so 1 <= i <= size.)
509 >     * Removes the ith element from queue.
510       *
511 <     * Normally this method leaves the elements at positions from 1 up to i-1,
512 <     * inclusive, untouched.  Under these circumstances, it returns null.
513 <     * Occasionally, in order to maintain the heap invariant, it must move
514 <     * the last element of the list to some index in the range [2, i-1],
515 <     * and move the element previously at position (i/2) to position i.
516 <     * Under these circumstances, this method returns the element that was
517 <     * previously at the end of the list and is now at some position between
518 <     * 2 and i-1 inclusive.
511 >     * Normally this method leaves the elements at up to i-1,
512 >     * inclusive, untouched.  Under these circumstances, it returns
513 >     * null.  Occasionally, in order to maintain the heap invariant,
514 >     * it must swap a later element of the list with one earlier than
515 >     * i.  Under these circumstances, this method returns the element
516 >     * that was previously at the end of the list and is now at some
517 >     * position before i. This fact is used by iterator.remove so as to
518 >     * avoid missing traverseing elements.
519       */
520      private E removeAt(int i) {
521 <        assert i > 0 && i <= size;
521 >        assert i >= 0 && i < size;
522          modCount++;
523 <
524 <        E moved = (E) queue[size];
525 <        queue[i] = moved;
526 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
527 <        if (i <= size) {
528 <            fixDown(i);
523 >        int s = --size;
524 >        if (s == i) // removed last element
525 >            queue[i] = null;
526 >        else {
527 >            E moved = (E) queue[s];
528 >            queue[s] = null;  
529 >            siftDown(i, moved);
530              if (queue[i] == moved) {
531 <                fixUp(i);
531 >                siftUp(i, moved);
532                  if (queue[i] != moved)
533                      return moved;
534              }
# Line 578 | Line 537 | public class PriorityQueue<E> extends Ab
537      }
538  
539      /**
540 <     * Establishes the heap invariant (described above) assuming the heap
541 <     * satisfies the invariant except possibly for the leaf-node indexed by k
542 <     * (which may have a nextExecutionTime less than its parent's).
543 <     *
544 <     * This method functions by "promoting" queue[k] up the hierarchy
545 <     * (by swapping it with its parent) repeatedly until queue[k]
546 <     * is greater than or equal to its parent.
547 <     */
548 <    private void fixUp(int k) {
549 <        if (comparator == null) {
550 <            while (k > 1) {
551 <                int j = k >> 1;
552 <                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
553 <                    break;
554 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
555 <                k = j;
556 <            }
557 <        } else {
558 <            while (k > 1) {
559 <                int j = k >>> 1;
560 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
561 <                    break;
562 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
563 <                k = j;
564 <            }
565 <        }
566 <    }
567 <
568 <    /**
569 <     * Establishes the heap invariant (described above) in the subtree
570 <     * rooted at k, which is assumed to satisfy the heap invariant except
571 <     * possibly for node k itself (which may be greater than its children).
572 <     *
573 <     * This method functions by "demoting" queue[k] down the hierarchy
574 <     * (by swapping it with its smaller child) repeatedly until queue[k]
575 <     * is less than or equal to its children.
576 <     */
577 <    private void fixDown(int k) {
578 <        int j;
579 <        if (comparator == null) {
580 <            while ((j = k << 1) <= size && (j > 0)) {
581 <                if (j<size &&
582 <                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
583 <                    j++; // j indexes smallest kid
584 <
585 <                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
586 <                    break;
587 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
588 <                k = j;
589 <            }
590 <        } else {
591 <            while ((j = k << 1) <= size && (j > 0)) {
592 <                if (j<size &&
593 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
594 <                    j++; // j indexes smallest kid
595 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
596 <                    break;
597 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
598 <                k = j;
599 <            }
540 >     * Inserts item x at position k, maintaining heap invariant by
541 >     * promoting x up the tree until it is greater than or equal to
542 >     * its parent, or is the root.
543 >     *
544 >     * To simplify and speed up coercions and comparisons. the
545 >     * Comparable and Comparator versions are separated into different
546 >     * methods that are otherwise identical. (Similarly for siftDown.)
547 >     *
548 >     * @param k the position to fill
549 >     * @param x the item to insert
550 >     */
551 >    private void siftUp(int k, E x) {
552 >        if (comparator != null)
553 >            siftUpUsingComparator(k, x);
554 >        else
555 >            siftUpComparable(k, x);
556 >    }
557 >
558 >    private void siftUpComparable(int k, E x) {
559 >        Comparable<? super E> key = (Comparable<? super E>) x;
560 >        while (k > 0) {
561 >            int parent = (k - 1) >>> 1;
562 >            Object e = queue[parent];
563 >            if (key.compareTo((E)e) >= 0)
564 >                break;
565 >            queue[k] = e;
566 >            k = parent;
567 >        }
568 >        queue[k] = key;
569 >    }
570 >
571 >    private void siftUpUsingComparator(int k, E x) {
572 >        while (k > 0) {
573 >            int parent = (k - 1) >>> 1;
574 >            Object e = queue[parent];
575 >            if (comparator.compare(x, (E)e) >= 0)
576 >                break;
577 >            queue[k] = e;
578 >            k = parent;
579 >        }
580 >        queue[k] = x;
581 >    }
582 >
583 >    /**
584 >     * Inserts item x at position k, maintaining heap invariant by
585 >     * demoting x down the tree repeatedly until it is less than or
586 >     * equal to its children or is a leaf.
587 >     *
588 >     * @param k the position to fill
589 >     * @param x the item to insert
590 >     */
591 >    private void siftDown(int k, E x) {
592 >        if (comparator != null)
593 >            siftDownUsingComparator(k, x);
594 >        else
595 >            siftDownComparable(k, x);
596 >    }
597 >
598 >    private void siftDownComparable(int k, E x) {
599 >        Comparable<? super E> key = (Comparable<? super E>)x;
600 >        int half = size >>> 1;        // loop while a non-leaf
601 >        while (k < half) {
602 >            int child = (k << 1) + 1; // assume left child is least
603 >            Object c = queue[child];
604 >            int right = child + 1;
605 >            if (right < size &&
606 >                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
607 >                c = queue[child = right];
608 >            if (key.compareTo((E)c) <= 0)
609 >                break;
610 >            queue[k] = c;
611 >            k = child;
612 >        }
613 >        queue[k] = key;
614 >    }
615 >
616 >    private void siftDownUsingComparator(int k, E x) {
617 >        int half = size >>> 1;
618 >        while (k < half) {
619 >            int child = (k << 1) + 1;
620 >            Object c = queue[child];
621 >            int right = child + 1;
622 >            if (right < size &&
623 >                comparator.compare((E)c, (E)queue[right]) > 0)
624 >                c = queue[child = right];
625 >            if (comparator.compare(x, (E)c) <= 0)
626 >                break;
627 >            queue[k] = c;
628 >            k = child;
629          }
630 +        queue[k] = x;
631      }
632  
633      /**
# Line 646 | Line 635 | public class PriorityQueue<E> extends Ab
635       * assuming nothing about the order of the elements prior to the call.
636       */
637      private void heapify() {
638 <        for (int i = size/2; i >= 1; i--)
639 <            fixDown(i);
638 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
639 >            siftDown(i, (E)queue[i]);
640      }
641  
642      /**
# Line 678 | Line 667 | public class PriorityQueue<E> extends Ab
667          s.defaultWriteObject();
668  
669          // Write out array length
670 <        s.writeInt(queue.length);
670 >        // For compatibility with 1.5 version, must be at least 2.
671 >        s.writeInt(Math.max(2, queue.length));
672  
673          // Write out all elements in the proper order.
674 <        for (int i=1; i<=size; i++)
674 >        for (int i=0; i<size; i++)
675              s.writeObject(queue[i]);
676      }
677  
# Line 700 | Line 690 | public class PriorityQueue<E> extends Ab
690          queue = new Object[arrayLength];
691  
692          // Read in all elements in the proper order.
693 <        for (int i=1; i<=size; i++)
693 >        for (int i=0; i<size; i++)
694              queue[i] = (E) s.readObject();
695      }
696  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines