ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.6 by brian, Mon Jun 23 02:26:15 2003 UTC vs.
Revision 1.131 by jsr166, Wed May 22 17:36:58 2019 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31 > import jdk.internal.util.ArraysSupport;
32  
33   /**
34 < * An unbounded priority queue based on a priority heap.  This queue orders
35 < * elements according to an order specified at construction time, which is
36 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
37 < * either according to their <i>natural order</i> (see {@link Comparable}), or
38 < * according to a {@link Comparator}, depending on which constructor is used.
39 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
40 < * minimal element with respect to the specified ordering.  If multiple
41 < * elements are tied for least value, no guarantees are made as to
42 < * which of these elements is returned.
43 < *
44 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the size of
45 < * the array used internally to store the elements on the queue.  It is always at least
46 < * as large as the queue size.  As elements are added to a priority queue,
47 < * its capacity grows automatically.  The details of the growth policy are not
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42 > *
43 > * <p>The <em>head</em> of this queue is the <em>least</em> element
44 > * with respect to the specified ordering.  If multiple elements are
45 > * tied for least value, the head is one of those elements -- ties are
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48 > * element at the head of the queue.
49 > *
50 > * <p>A priority queue is unbounded, but has an internal
51 > * <i>capacity</i> governing the size of an array used to store the
52 > * elements on the queue.  It is always at least as large as the queue
53 > * size.  As elements are added to a priority queue, its capacity
54 > * grows automatically.  The details of the growth policy are not
55   * specified.
56   *
57 < *<p>Implementation note: this implementation provides O(log(n)) time for
58 < * the insertion methods (<tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>)
59 < * methods; linear time for the <tt>remove(Object)</tt> and
60 < * <tt>contains(Object)</tt> methods; and constant time for the retrieval methods (<tt>peek</tt>,
61 < * <tt>element</tt>, and <tt>size</tt>).
57 > * <p>This class and its iterator implement all of the
58 > * <em>optional</em> methods of the {@link Collection} and {@link
59 > * Iterator} interfaces.  The Iterator provided in method {@link
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62 > * the priority queue in any particular order. If you need ordered
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 > *
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69 > * java.util.concurrent.PriorityBlockingQueue} class.
70 > *
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../guide/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81 + *
82 + * @since 1.5
83 + * @author Josh Bloch, Doug Lea
84 + * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88 <                              implements Queue<E>
89 < {
88 >    implements java.io.Serializable {
89 >
90 >    private static final long serialVersionUID = -7720805057305804111L;
91 >
92      private static final int DEFAULT_INITIAL_CAPACITY = 11;
93  
94      /**
95 <     * Priority queue represented as a balanced binary heap: the two children
96 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
97 <     * ordered by comparator, or by the elements' natural ordering, if
98 <     * comparator is null:  For each node n in the heap and each descendant d
99 <     * of n, n <= d.
100 <     *
42 <     * The element with the lowest value is in queue[1], assuming the queue is
43 <     * nonempty.  (A one-based array is used in preference to the traditional
44 <     * zero-based array to simplify parent and child calculations.)
45 <     *
46 <     * queue.length must be >= 2, even if size == 0.
95 >     * Priority queue represented as a balanced binary heap: the two
96 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
97 >     * priority queue is ordered by comparator, or by the elements'
98 >     * natural ordering, if comparator is null: For each node n in the
99 >     * heap and each descendant d of n, n <= d.  The element with the
100 >     * lowest value is in queue[0], assuming the queue is nonempty.
101       */
102 <    private transient E[] queue;
102 >    transient Object[] queue; // non-private to simplify nested class access
103  
104      /**
105       * The number of elements in the priority queue.
106       */
107 <    private int size = 0;
107 >    int size;
108  
109      /**
110       * The comparator, or null if priority queue uses elements'
111       * natural ordering.
112       */
113 <    private final Comparator<E> comparator;
113 >    private final Comparator<? super E> comparator;
114  
115      /**
116       * The number of times this priority queue has been
117       * <i>structurally modified</i>.  See AbstractList for gory details.
118       */
119 <    private transient int modCount = 0;
119 >    transient int modCount;     // non-private to simplify nested class access
120  
121      /**
122 <     * Create a new priority queue with the default initial capacity (11)
123 <     * that orders its elements according to their natural ordering (using <tt>Comparable</tt>.)
122 >     * Creates a {@code PriorityQueue} with the default initial
123 >     * capacity (11) that orders its elements according to their
124 >     * {@linkplain Comparable natural ordering}.
125       */
126      public PriorityQueue() {
127 <        this(DEFAULT_INITIAL_CAPACITY);
127 >        this(DEFAULT_INITIAL_CAPACITY, null);
128      }
129  
130      /**
131 <     * Create a new priority queue with the specified initial capacity
132 <     * that orders its elements according to their natural ordering (using <tt>Comparable</tt>.)
131 >     * Creates a {@code PriorityQueue} with the specified initial
132 >     * capacity that orders its elements according to their
133 >     * {@linkplain Comparable natural ordering}.
134       *
135 <     * @param initialCapacity the initial capacity for this priority queue.
135 >     * @param initialCapacity the initial capacity for this priority queue
136 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
137 >     *         than 1
138       */
139      public PriorityQueue(int initialCapacity) {
140          this(initialCapacity, null);
141      }
142  
143      /**
144 <     * Create a new priority queue with the specified initial capacity (11)
145 <     * that orders its elements according to the specified comparator.
144 >     * Creates a {@code PriorityQueue} with the default initial capacity and
145 >     * whose elements are ordered according to the specified comparator.
146       *
147 <     * @param initialCapacity the initial capacity for this priority queue.
148 <     * @param comparator the comparator used to order this priority queue.
147 >     * @param  comparator the comparator that will be used to order this
148 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
149 >     *         natural ordering} of the elements will be used.
150 >     * @since 1.8
151       */
152 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
152 >    public PriorityQueue(Comparator<? super E> comparator) {
153 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
154 >    }
155 >
156 >    /**
157 >     * Creates a {@code PriorityQueue} with the specified initial capacity
158 >     * that orders its elements according to the specified comparator.
159 >     *
160 >     * @param  initialCapacity the initial capacity for this priority queue
161 >     * @param  comparator the comparator that will be used to order this
162 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
163 >     *         natural ordering} of the elements will be used.
164 >     * @throws IllegalArgumentException if {@code initialCapacity} is
165 >     *         less than 1
166 >     */
167 >    public PriorityQueue(int initialCapacity,
168 >                         Comparator<? super E> comparator) {
169 >        // Note: This restriction of at least one is not actually needed,
170 >        // but continues for 1.5 compatibility
171          if (initialCapacity < 1)
172 <            initialCapacity = 1;
173 <        queue = new E[initialCapacity + 1];
172 >            throw new IllegalArgumentException();
173 >        this.queue = new Object[initialCapacity];
174          this.comparator = comparator;
175      }
176  
177      /**
178 <     * Create a new priority queue containing the elements in the specified
179 <     * collection.  The priority queue has an initial capacity of 110% of the
180 <     * size of the specified collection. If the specified collection
181 <     * implements the {@link Sorted} interface, the priority queue will be
182 <     * sorted according to the same comparator, or according to its elements'
183 <     * natural order if the collection is sorted according to its elements'
106 <     * natural order.  If the specified collection does not implement
107 <     * <tt>Sorted</tt>, the priority queue is ordered according to
108 <     * its elements' natural order.
178 >     * Creates a {@code PriorityQueue} containing the elements in the
179 >     * specified collection.  If the specified collection is an instance of
180 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
181 >     * priority queue will be ordered according to the same ordering.
182 >     * Otherwise, this priority queue will be ordered according to the
183 >     * {@linkplain Comparable natural ordering} of its elements.
184       *
185 <     * @param initialElements the collection whose elements are to be placed
186 <     *        into this priority queue.
185 >     * @param  c the collection whose elements are to be placed
186 >     *         into this priority queue
187       * @throws ClassCastException if elements of the specified collection
188       *         cannot be compared to one another according to the priority
189 <     *         queue's ordering.
190 <     * @throws NullPointerException if the specified collection or an
191 <     *         element of the specified collection is <tt>null</tt>.
192 <     */
193 <    public PriorityQueue(Collection<E> initialElements) {
194 <        int sz = initialElements.size();
195 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
196 <                                            Integer.MAX_VALUE - 1);
197 <        if (initialCapacity < 1)
198 <            initialCapacity = 1;
199 <        queue = new E[initialCapacity + 1];
189 >     *         queue's ordering
190 >     * @throws NullPointerException if the specified collection or any
191 >     *         of its elements are null
192 >     */
193 >    public PriorityQueue(Collection<? extends E> c) {
194 >        if (c instanceof SortedSet<?>) {
195 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
196 >            this.comparator = (Comparator<? super E>) ss.comparator();
197 >            initElementsFromCollection(ss);
198 >        }
199 >        else if (c instanceof PriorityQueue<?>) {
200 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
201 >            this.comparator = (Comparator<? super E>) pq.comparator();
202 >            initFromPriorityQueue(pq);
203 >        }
204 >        else {
205 >            this.comparator = null;
206 >            initFromCollection(c);
207 >        }
208 >    }
209  
210 <        /* Commented out to compile with generics compiler
210 >    /**
211 >     * Creates a {@code PriorityQueue} containing the elements in the
212 >     * specified priority queue.  This priority queue will be
213 >     * ordered according to the same ordering as the given priority
214 >     * queue.
215 >     *
216 >     * @param  c the priority queue whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of {@code c} cannot be
219 >     *         compared to one another according to {@code c}'s
220 >     *         ordering
221 >     * @throws NullPointerException if the specified priority queue or any
222 >     *         of its elements are null
223 >     */
224 >    public PriorityQueue(PriorityQueue<? extends E> c) {
225 >        this.comparator = (Comparator<? super E>) c.comparator();
226 >        initFromPriorityQueue(c);
227 >    }
228  
229 <        if (initialElements instanceof Sorted) {
230 <            comparator = ((Sorted)initialElements).comparator();
231 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
232 <                queue[++size] = i.next();
229 >    /**
230 >     * Creates a {@code PriorityQueue} containing the elements in the
231 >     * specified sorted set.   This priority queue will be ordered
232 >     * according to the same ordering as the given sorted set.
233 >     *
234 >     * @param  c the sorted set whose elements are to be placed
235 >     *         into this priority queue
236 >     * @throws ClassCastException if elements of the specified sorted
237 >     *         set cannot be compared to one another according to the
238 >     *         sorted set's ordering
239 >     * @throws NullPointerException if the specified sorted set or any
240 >     *         of its elements are null
241 >     */
242 >    public PriorityQueue(SortedSet<? extends E> c) {
243 >        this.comparator = (Comparator<? super E>) c.comparator();
244 >        initElementsFromCollection(c);
245 >    }
246 >
247 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
248 >    private static Object[] ensureNonEmpty(Object[] es) {
249 >        return (es.length > 0) ? es : new Object[1];
250 >    }
251 >
252 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
253 >        if (c.getClass() == PriorityQueue.class) {
254 >            this.queue = ensureNonEmpty(c.toArray());
255 >            this.size = c.size();
256          } else {
257 <        */
134 <        {
135 <            comparator = null;
136 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137 <                add(i.next());
257 >            initFromCollection(c);
258          }
259      }
260  
261 <    // Queue Methods
261 >    private void initElementsFromCollection(Collection<? extends E> c) {
262 >        Object[] es = c.toArray();
263 >        int len = es.length;
264 >        // If c.toArray incorrectly doesn't return Object[], copy it.
265 >        if (es.getClass() != Object[].class)
266 >            es = Arrays.copyOf(es, len, Object[].class);
267 >        if (len == 1 || this.comparator != null)
268 >            for (Object e : es)
269 >                if (e == null)
270 >                    throw new NullPointerException();
271 >        this.queue = ensureNonEmpty(es);
272 >        this.size = len;
273 >    }
274  
275      /**
276 <     * Remove and return the minimal element from this priority queue if
145 <     * it contains one or more elements, otherwise return <tt>null</tt>.  The term
146 <     * <i>minimal</i> is defined according to this priority queue's order.
276 >     * Initializes queue array with elements from the given Collection.
277       *
278 <     * @return the minimal element from this priority queue if it contains
149 <     *         one or more elements, otherwise <tt>null</tt>.
278 >     * @param c the collection
279       */
280 <    public E poll() {
281 <        if (size == 0)
282 <            return null;
154 <        return remove(1);
280 >    private void initFromCollection(Collection<? extends E> c) {
281 >        initElementsFromCollection(c);
282 >        heapify();
283      }
284  
285      /**
286 <     * Return, but do not remove, the minimal element from the priority queue,
159 <     * or return <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
160 <     * defined according to this priority queue's order.  This method returns
161 <     * the same object reference that would be returned by by the
162 <     * <tt>poll</tt> method.  The two methods differ in that this method
163 <     * does not remove the element from the priority queue.
286 >     * Increases the capacity of the array.
287       *
288 <     * @return the minimal element from this priority queue if it contains
166 <     *         one or more elements, otherwise <tt>null</tt>.
288 >     * @param minCapacity the desired minimum capacity
289       */
290 <    public E peek() {
291 <        return queue[1];
290 >    private void grow(int minCapacity) {
291 >        int oldCapacity = queue.length;
292 >        // Double size if small; else grow by 50%
293 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
294 >                minCapacity - oldCapacity, /* minimum growth */
295 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
296 >                                           /* preferred growth */);
297 >        queue = Arrays.copyOf(queue, newCapacity);
298      }
299  
300 <    // Collection Methods
300 >    /**
301 >     * Inserts the specified element into this priority queue.
302 >     *
303 >     * @return {@code true} (as specified by {@link Collection#add})
304 >     * @throws ClassCastException if the specified element cannot be
305 >     *         compared with elements currently in this priority queue
306 >     *         according to the priority queue's ordering
307 >     * @throws NullPointerException if the specified element is null
308 >     */
309 >    public boolean add(E e) {
310 >        return offer(e);
311 >    }
312  
313      /**
314 <     * Removes a single instance of the specified element from this priority
176 <     * queue, if it is present.  Returns true if this collection contained the
177 <     * specified element (or equivalently, if this collection changed as a
178 <     * result of the call).
314 >     * Inserts the specified element into this priority queue.
315       *
316 <     * @param element the element to be removed from this collection, if present.
317 <     * @return <tt>true</tt> if this collection changed as a result of the
318 <     *         call
319 <     * @throws ClassCastException if the specified element cannot be compared
320 <     *            with elements currently in the priority queue according
185 <     *            to the priority queue's ordering.
186 <     * @throws NullPointerException if the specified element is null.
316 >     * @return {@code true} (as specified by {@link Queue#offer})
317 >     * @throws ClassCastException if the specified element cannot be
318 >     *         compared with elements currently in this priority queue
319 >     *         according to the priority queue's ordering
320 >     * @throws NullPointerException if the specified element is null
321       */
322 <    public boolean remove(Object element) {
323 <        if (element == null)
322 >    public boolean offer(E e) {
323 >        if (e == null)
324              throw new NullPointerException();
325 +        modCount++;
326 +        int i = size;
327 +        if (i >= queue.length)
328 +            grow(i + 1);
329 +        siftUp(i, e);
330 +        size = i + 1;
331 +        return true;
332 +    }
333  
334 <        if (comparator == null) {
335 <            for (int i = 1; i <= size; i++) {
336 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
337 <                    remove(i);
338 <                    return true;
339 <                }
340 <            }
341 <        } else {
342 <            for (int i = 1; i <= size; i++) {
343 <                if (comparator.compare(queue[i], (E) element) == 0) {
202 <                    remove(i);
203 <                    return true;
204 <                }
205 <            }
334 >    public E peek() {
335 >        return (E) queue[0];
336 >    }
337 >
338 >    private int indexOf(Object o) {
339 >        if (o != null) {
340 >            final Object[] es = queue;
341 >            for (int i = 0, n = size; i < n; i++)
342 >                if (o.equals(es[i]))
343 >                    return i;
344          }
345 <        return false;
345 >        return -1;
346      }
347  
348      /**
349 <     * Returns an iterator over the elements in this priority queue.  The
350 <     * elements of the priority queue will be returned by this iterator in the
351 <     * order specified by the queue, which is to say the order they would be
352 <     * returned by repeated calls to <tt>poll</tt>.
353 <     *
354 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
349 >     * Removes a single instance of the specified element from this queue,
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354 >     * result of the call).
355 >     *
356 >     * @param o element to be removed from this queue, if present
357 >     * @return {@code true} if this queue changed as a result of the call
358       */
359 <    public Iterator<E> iterator() {
360 <        return new Itr();
359 >    public boolean remove(Object o) {
360 >        int i = indexOf(o);
361 >        if (i == -1)
362 >            return false;
363 >        else {
364 >            removeAt(i);
365 >            return true;
366 >        }
367      }
368  
369 <    private class Itr implements Iterator<E> {
370 <        /**
371 <         * Index (into queue array) of element to be returned by
372 <         * subsequent call to next.
373 <         */
374 <        int cursor = 1;
369 >    /**
370 >     * Identity-based version for use in Itr.remove.
371 >     *
372 >     * @param o element to be removed from this queue, if present
373 >     */
374 >    void removeEq(Object o) {
375 >        final Object[] es = queue;
376 >        for (int i = 0, n = size; i < n; i++) {
377 >            if (o == es[i]) {
378 >                removeAt(i);
379 >                break;
380 >            }
381 >        }
382 >    }
383  
384 <        /**
385 <         * Index of element returned by most recent call to next or
386 <         * previous.  Reset to 0 if this element is deleted by a call
387 <         * to remove.
388 <         */
389 <        int lastRet = 0;
390 <
391 <        /**
392 <         * The modCount value that the iterator believes that the backing
393 <         * List should have.  If this expectation is violated, the iterator
394 <         * has detected concurrent modification.
240 <         */
241 <        int expectedModCount = modCount;
242 <
243 <        public boolean hasNext() {
244 <            return cursor <= size;
245 <        }
246 <
247 <        public E next() {
248 <            checkForComodification();
249 <            if (cursor > size)
250 <                throw new NoSuchElementException();
251 <            E result = queue[cursor];
252 <            lastRet = cursor++;
253 <            return result;
254 <        }
255 <
256 <        public void remove() {
257 <            if (lastRet == 0)
258 <                throw new IllegalStateException();
259 <            checkForComodification();
260 <
261 <            PriorityQueue.this.remove(lastRet);
262 <            if (lastRet < cursor)
263 <                cursor--;
264 <            lastRet = 0;
265 <            expectedModCount = modCount;
266 <        }
384 >    /**
385 >     * Returns {@code true} if this queue contains the specified element.
386 >     * More formally, returns {@code true} if and only if this queue contains
387 >     * at least one element {@code e} such that {@code o.equals(e)}.
388 >     *
389 >     * @param o object to be checked for containment in this queue
390 >     * @return {@code true} if this queue contains the specified element
391 >     */
392 >    public boolean contains(Object o) {
393 >        return indexOf(o) >= 0;
394 >    }
395  
396 <        final void checkForComodification() {
397 <            if (modCount != expectedModCount)
398 <                throw new ConcurrentModificationException();
399 <        }
396 >    /**
397 >     * Returns an array containing all of the elements in this queue.
398 >     * The elements are in no particular order.
399 >     *
400 >     * <p>The returned array will be "safe" in that no references to it are
401 >     * maintained by this queue.  (In other words, this method must allocate
402 >     * a new array).  The caller is thus free to modify the returned array.
403 >     *
404 >     * <p>This method acts as bridge between array-based and collection-based
405 >     * APIs.
406 >     *
407 >     * @return an array containing all of the elements in this queue
408 >     */
409 >    public Object[] toArray() {
410 >        return Arrays.copyOf(queue, size);
411      }
412  
413      /**
414 <     * Returns the number of elements in this priority queue.
415 <     *
416 <     * @return the number of elements in this priority queue.
414 >     * Returns an array containing all of the elements in this queue; the
415 >     * runtime type of the returned array is that of the specified array.
416 >     * The returned array elements are in no particular order.
417 >     * If the queue fits in the specified array, it is returned therein.
418 >     * Otherwise, a new array is allocated with the runtime type of the
419 >     * specified array and the size of this queue.
420 >     *
421 >     * <p>If the queue fits in the specified array with room to spare
422 >     * (i.e., the array has more elements than the queue), the element in
423 >     * the array immediately following the end of the collection is set to
424 >     * {@code null}.
425 >     *
426 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
427 >     * array-based and collection-based APIs.  Further, this method allows
428 >     * precise control over the runtime type of the output array, and may,
429 >     * under certain circumstances, be used to save allocation costs.
430 >     *
431 >     * <p>Suppose {@code x} is a queue known to contain only strings.
432 >     * The following code can be used to dump the queue into a newly
433 >     * allocated array of {@code String}:
434 >     *
435 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436 >     *
437 >     * Note that {@code toArray(new Object[0])} is identical in function to
438 >     * {@code toArray()}.
439 >     *
440 >     * @param a the array into which the elements of the queue are to
441 >     *          be stored, if it is big enough; otherwise, a new array of the
442 >     *          same runtime type is allocated for this purpose.
443 >     * @return an array containing all of the elements in this queue
444 >     * @throws ArrayStoreException if the runtime type of the specified array
445 >     *         is not a supertype of the runtime type of every element in
446 >     *         this queue
447 >     * @throws NullPointerException if the specified array is null
448       */
449 <    public int size() {
450 <        return size;
449 >    public <T> T[] toArray(T[] a) {
450 >        final int size = this.size;
451 >        if (a.length < size)
452 >            // Make a new array of a's runtime type, but my contents:
453 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
454 >        System.arraycopy(queue, 0, a, 0, size);
455 >        if (a.length > size)
456 >            a[size] = null;
457 >        return a;
458      }
459  
460      /**
461 <     * Add the specified element to this priority queue.
461 >     * Returns an iterator over the elements in this queue. The iterator
462 >     * does not return the elements in any particular order.
463       *
464 <     * @param element the element to add.
287 <     * @return true
288 <     * @throws ClassCastException if the specified element cannot be compared
289 <     *            with elements currently in the priority queue according
290 <     *            to the priority queue's ordering.
291 <     * @throws NullPointerException if the specified element is null.
464 >     * @return an iterator over the elements in this queue
465       */
466 <    public boolean offer(E element) {
467 <        if (element == null)
468 <            throw new NullPointerException();
469 <        modCount++;
466 >    public Iterator<E> iterator() {
467 >        return new Itr();
468 >    }
469 >
470 >    private final class Itr implements Iterator<E> {
471 >        /**
472 >         * Index (into queue array) of element to be returned by
473 >         * subsequent call to next.
474 >         */
475 >        private int cursor;
476  
477 <        // Grow backing store if necessary
478 <        if (++size == queue.length) {
479 <            E[] newQueue = new E[2 * queue.length];
480 <            System.arraycopy(queue, 0, newQueue, 0, size);
481 <            queue = newQueue;
477 >        /**
478 >         * Index of element returned by most recent call to next,
479 >         * unless that element came from the forgetMeNot list.
480 >         * Set to -1 if element is deleted by a call to remove.
481 >         */
482 >        private int lastRet = -1;
483 >
484 >        /**
485 >         * A queue of elements that were moved from the unvisited portion of
486 >         * the heap into the visited portion as a result of "unlucky" element
487 >         * removals during the iteration.  (Unlucky element removals are those
488 >         * that require a siftup instead of a siftdown.)  We must visit all of
489 >         * the elements in this list to complete the iteration.  We do this
490 >         * after we've completed the "normal" iteration.
491 >         *
492 >         * We expect that most iterations, even those involving removals,
493 >         * will not need to store elements in this field.
494 >         */
495 >        private ArrayDeque<E> forgetMeNot;
496 >
497 >        /**
498 >         * Element returned by the most recent call to next iff that
499 >         * element was drawn from the forgetMeNot list.
500 >         */
501 >        private E lastRetElt;
502 >
503 >        /**
504 >         * The modCount value that the iterator believes that the backing
505 >         * Queue should have.  If this expectation is violated, the iterator
506 >         * has detected concurrent modification.
507 >         */
508 >        private int expectedModCount = modCount;
509 >
510 >        Itr() {}                        // prevent access constructor creation
511 >
512 >        public boolean hasNext() {
513 >            return cursor < size ||
514 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
515          }
516  
517 <        queue[size] = element;
518 <        fixUp(size);
519 <        return true;
517 >        public E next() {
518 >            if (expectedModCount != modCount)
519 >                throw new ConcurrentModificationException();
520 >            if (cursor < size)
521 >                return (E) queue[lastRet = cursor++];
522 >            if (forgetMeNot != null) {
523 >                lastRet = -1;
524 >                lastRetElt = forgetMeNot.poll();
525 >                if (lastRetElt != null)
526 >                    return lastRetElt;
527 >            }
528 >            throw new NoSuchElementException();
529 >        }
530 >
531 >        public void remove() {
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (lastRet != -1) {
535 >                E moved = PriorityQueue.this.removeAt(lastRet);
536 >                lastRet = -1;
537 >                if (moved == null)
538 >                    cursor--;
539 >                else {
540 >                    if (forgetMeNot == null)
541 >                        forgetMeNot = new ArrayDeque<>();
542 >                    forgetMeNot.add(moved);
543 >                }
544 >            } else if (lastRetElt != null) {
545 >                PriorityQueue.this.removeEq(lastRetElt);
546 >                lastRetElt = null;
547 >            } else {
548 >                throw new IllegalStateException();
549 >            }
550 >            expectedModCount = modCount;
551 >        }
552 >    }
553 >
554 >    public int size() {
555 >        return size;
556      }
557  
558      /**
559 <     * Remove all elements from the priority queue.
559 >     * Removes all of the elements from this priority queue.
560 >     * The queue will be empty after this call returns.
561       */
562      public void clear() {
563          modCount++;
564 +        final Object[] es = queue;
565 +        for (int i = 0, n = size; i < n; i++)
566 +            es[i] = null;
567 +        size = 0;
568 +    }
569  
570 <        // Null out element references to prevent memory leak
571 <        for (int i=1; i<=size; i++)
572 <            queue[i] = null;
570 >    public E poll() {
571 >        final Object[] es;
572 >        final E result;
573  
574 <        size = 0;
574 >        if ((result = (E) ((es = queue)[0])) != null) {
575 >            modCount++;
576 >            final int n;
577 >            final E x = (E) es[(n = --size)];
578 >            es[n] = null;
579 >            if (n > 0) {
580 >                final Comparator<? super E> cmp;
581 >                if ((cmp = comparator) == null)
582 >                    siftDownComparable(0, x, es, n);
583 >                else
584 >                    siftDownUsingComparator(0, x, es, n, cmp);
585 >            }
586 >        }
587 >        return result;
588      }
589  
590      /**
591 <     * Removes and returns the ith element from queue.  Recall
325 <     * that queue is one-based, so 1 <= i <= size.
591 >     * Removes the ith element from queue.
592       *
593 <     * XXX: Could further special-case i==size, but is it worth it?
594 <     * XXX: Could special-case i==0, but is it worth it?
595 <     */
596 <    private E remove(int i) {
597 <        assert i <= size;
593 >     * Normally this method leaves the elements at up to i-1,
594 >     * inclusive, untouched.  Under these circumstances, it returns
595 >     * null.  Occasionally, in order to maintain the heap invariant,
596 >     * it must swap a later element of the list with one earlier than
597 >     * i.  Under these circumstances, this method returns the element
598 >     * that was previously at the end of the list and is now at some
599 >     * position before i. This fact is used by iterator.remove so as to
600 >     * avoid missing traversing elements.
601 >     */
602 >    E removeAt(int i) {
603 >        // assert i >= 0 && i < size;
604 >        final Object[] es = queue;
605          modCount++;
606 <
607 <        E result = queue[i];
608 <        queue[i] = queue[size];
609 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
610 <        if (i <= size)
611 <            fixDown(i);
612 <        return result;
606 >        int s = --size;
607 >        if (s == i) // removed last element
608 >            es[i] = null;
609 >        else {
610 >            E moved = (E) es[s];
611 >            es[s] = null;
612 >            siftDown(i, moved);
613 >            if (es[i] == moved) {
614 >                siftUp(i, moved);
615 >                if (es[i] != moved)
616 >                    return moved;
617 >            }
618 >        }
619 >        return null;
620      }
621  
622      /**
623 <     * Establishes the heap invariant (described above) assuming the heap
624 <     * satisfies the invariant except possibly for the leaf-node indexed by k
625 <     * (which may have a nextExecutionTime less than its parent's).
626 <     *
627 <     * This method functions by "promoting" queue[k] up the hierarchy
628 <     * (by swapping it with its parent) repeatedly until queue[k]
629 <     * is greater than or equal to its parent.
630 <     */
631 <    private void fixUp(int k) {
632 <        if (comparator == null) {
633 <            while (k > 1) {
634 <                int j = k >> 1;
635 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
636 <                    break;
637 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
638 <                k = j;
639 <            }
640 <        } else {
641 <            while (k > 1) {
642 <                int j = k >> 1;
643 <                if (comparator.compare(queue[j], queue[k]) <= 0)
644 <                    break;
645 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
646 <                k = j;
647 <            }
623 >     * Inserts item x at position k, maintaining heap invariant by
624 >     * promoting x up the tree until it is greater than or equal to
625 >     * its parent, or is the root.
626 >     *
627 >     * To simplify and speed up coercions and comparisons, the
628 >     * Comparable and Comparator versions are separated into different
629 >     * methods that are otherwise identical. (Similarly for siftDown.)
630 >     *
631 >     * @param k the position to fill
632 >     * @param x the item to insert
633 >     */
634 >    private void siftUp(int k, E x) {
635 >        if (comparator != null)
636 >            siftUpUsingComparator(k, x, queue, comparator);
637 >        else
638 >            siftUpComparable(k, x, queue);
639 >    }
640 >
641 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
642 >        Comparable<? super T> key = (Comparable<? super T>) x;
643 >        while (k > 0) {
644 >            int parent = (k - 1) >>> 1;
645 >            Object e = es[parent];
646 >            if (key.compareTo((T) e) >= 0)
647 >                break;
648 >            es[k] = e;
649 >            k = parent;
650 >        }
651 >        es[k] = key;
652 >    }
653 >
654 >    private static <T> void siftUpUsingComparator(
655 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
656 >        while (k > 0) {
657 >            int parent = (k - 1) >>> 1;
658 >            Object e = es[parent];
659 >            if (cmp.compare(x, (T) e) >= 0)
660 >                break;
661 >            es[k] = e;
662 >            k = parent;
663          }
664 +        es[k] = x;
665      }
666  
667      /**
668 <     * Establishes the heap invariant (described above) in the subtree
669 <     * rooted at k, which is assumed to satisfy the heap invariant except
670 <     * possibly for node k itself (which may be greater than its children).
671 <     *
672 <     * This method functions by "demoting" queue[k] down the hierarchy
673 <     * (by swapping it with its smaller child) repeatedly until queue[k]
674 <     * is less than or equal to its children.
675 <     */
676 <    private void fixDown(int k) {
677 <        int j;
678 <        if (comparator == null) {
679 <            while ((j = k << 1) <= size) {
680 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
681 <                    j++; // j indexes smallest kid
682 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
683 <                    break;
684 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
685 <                k = j;
686 <            }
687 <        } else {
688 <            while ((j = k << 1) <= size) {
689 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
690 <                    j++; // j indexes smallest kid
691 <                if (comparator.compare(queue[k], queue[j]) <= 0)
692 <                    break;
693 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
694 <                k = j;
695 <            }
668 >     * Inserts item x at position k, maintaining heap invariant by
669 >     * demoting x down the tree repeatedly until it is less than or
670 >     * equal to its children or is a leaf.
671 >     *
672 >     * @param k the position to fill
673 >     * @param x the item to insert
674 >     */
675 >    private void siftDown(int k, E x) {
676 >        if (comparator != null)
677 >            siftDownUsingComparator(k, x, queue, size, comparator);
678 >        else
679 >            siftDownComparable(k, x, queue, size);
680 >    }
681 >
682 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
683 >        // assert n > 0;
684 >        Comparable<? super T> key = (Comparable<? super T>)x;
685 >        int half = n >>> 1;           // loop while a non-leaf
686 >        while (k < half) {
687 >            int child = (k << 1) + 1; // assume left child is least
688 >            Object c = es[child];
689 >            int right = child + 1;
690 >            if (right < n &&
691 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
692 >                c = es[child = right];
693 >            if (key.compareTo((T) c) <= 0)
694 >                break;
695 >            es[k] = c;
696 >            k = child;
697          }
698 +        es[k] = key;
699 +    }
700 +
701 +    private static <T> void siftDownUsingComparator(
702 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
703 +        // assert n > 0;
704 +        int half = n >>> 1;
705 +        while (k < half) {
706 +            int child = (k << 1) + 1;
707 +            Object c = es[child];
708 +            int right = child + 1;
709 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
710 +                c = es[child = right];
711 +            if (cmp.compare(x, (T) c) <= 0)
712 +                break;
713 +            es[k] = c;
714 +            k = child;
715 +        }
716 +        es[k] = x;
717 +    }
718 +
719 +    /**
720 +     * Establishes the heap invariant (described above) in the entire tree,
721 +     * assuming nothing about the order of the elements prior to the call.
722 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
723 +     */
724 +    private void heapify() {
725 +        final Object[] es = queue;
726 +        int n = size, i = (n >>> 1) - 1;
727 +        final Comparator<? super E> cmp;
728 +        if ((cmp = comparator) == null)
729 +            for (; i >= 0; i--)
730 +                siftDownComparable(i, (E) es[i], es, n);
731 +        else
732 +            for (; i >= 0; i--)
733 +                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
734      }
735  
736      /**
737 <     * Returns the comparator associated with this priority queue, or
738 <     * <tt>null</tt> if it uses its elements' natural ordering.
737 >     * Returns the comparator used to order the elements in this
738 >     * queue, or {@code null} if this queue is sorted according to
739 >     * the {@linkplain Comparable natural ordering} of its elements.
740       *
741 <     * @return the comparator associated with this priority queue, or
742 <     *         <tt>null</tt> if it uses its elements' natural ordering.
741 >     * @return the comparator used to order this queue, or
742 >     *         {@code null} if this queue is sorted according to the
743 >     *         natural ordering of its elements
744       */
745 <    Comparator comparator() {
745 >    public Comparator<? super E> comparator() {
746          return comparator;
747      }
748  
749      /**
750 <     * Save the state of the instance to a stream (that
416 <     * is, serialize it).
750 >     * Saves this queue to a stream (that is, serializes it).
751       *
752 +     * @param s the stream
753 +     * @throws java.io.IOException if an I/O error occurs
754       * @serialData The length of the array backing the instance is
755 <     * emitted (int), followed by all of its elements (each an
756 <     * <tt>Object</tt>) in the proper order.
755 >     *             emitted (int), followed by all of its elements
756 >     *             (each an {@code Object}) in the proper order.
757       */
758 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
759 <        throws java.io.IOException{
760 <        // Write out element count, and any hidden stuff
761 <        s.defaultWriteObject();
758 >    private void writeObject(java.io.ObjectOutputStream s)
759 >        throws java.io.IOException {
760 >        // Write out element count, and any hidden stuff
761 >        s.defaultWriteObject();
762  
763 <        // Write out array length
764 <        s.writeInt(queue.length);
763 >        // Write out array length, for compatibility with 1.5 version
764 >        s.writeInt(Math.max(2, size + 1));
765  
766 <        // Write out all elements in the proper order.
767 <        for (int i=0; i<size; i++)
768 <            s.writeObject(queue[i]);
766 >        // Write out all elements in the "proper order".
767 >        final Object[] es = queue;
768 >        for (int i = 0, n = size; i < n; i++)
769 >            s.writeObject(es[i]);
770      }
771  
772      /**
773 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
774 <     * deserialize it).
773 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
774 >     * (that is, deserializes it).
775 >     *
776 >     * @param s the stream
777 >     * @throws ClassNotFoundException if the class of a serialized object
778 >     *         could not be found
779 >     * @throws java.io.IOException if an I/O error occurs
780       */
781 <    private synchronized void readObject(java.io.ObjectInputStream s)
781 >    private void readObject(java.io.ObjectInputStream s)
782          throws java.io.IOException, ClassNotFoundException {
783 <        // Read in size, and any hidden stuff
784 <        s.defaultReadObject();
783 >        // Read in size, and any hidden stuff
784 >        s.defaultReadObject();
785 >
786 >        // Read in (and discard) array length
787 >        s.readInt();
788 >
789 >        jsr166.Platform.checkArray(s, Object[].class, size);
790 >        final Object[] es = queue = new Object[Math.max(size, 1)];
791 >
792 >        // Read in all elements.
793 >        for (int i = 0, n = size; i < n; i++)
794 >            es[i] = s.readObject();
795 >
796 >        // Elements are guaranteed to be in "proper order", but the
797 >        // spec has never explained what that might be.
798 >        heapify();
799 >    }
800 >
801 >    /**
802 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 >     * queue. The spliterator does not traverse elements in any particular order
805 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 >     *
807 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 >     * Overriding implementations should document the reporting of additional
810 >     * characteristic values.
811 >     *
812 >     * @return a {@code Spliterator} over the elements in this queue
813 >     * @since 1.8
814 >     */
815 >    public final Spliterator<E> spliterator() {
816 >        return new PriorityQueueSpliterator(0, -1, 0);
817 >    }
818 >
819 >    final class PriorityQueueSpliterator implements Spliterator<E> {
820 >        private int index;            // current index, modified on advance/split
821 >        private int fence;            // -1 until first use
822 >        private int expectedModCount; // initialized when fence set
823 >
824 >        /** Creates new spliterator covering the given range. */
825 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
826 >            this.index = origin;
827 >            this.fence = fence;
828 >            this.expectedModCount = expectedModCount;
829 >        }
830 >
831 >        private int getFence() { // initialize fence to size on first use
832 >            int hi;
833 >            if ((hi = fence) < 0) {
834 >                expectedModCount = modCount;
835 >                hi = fence = size;
836 >            }
837 >            return hi;
838 >        }
839 >
840 >        public PriorityQueueSpliterator trySplit() {
841 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
842 >            return (lo >= mid) ? null :
843 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
844 >        }
845  
846 <        // Read in array length and allocate array
847 <        int arrayLength = s.readInt();
848 <        queue = new E[arrayLength];
849 <
850 <        // Read in all elements in the proper order.
851 <        for (int i=0; i<size; i++)
852 <            queue[i] = (E)s.readObject();
846 >        public void forEachRemaining(Consumer<? super E> action) {
847 >            if (action == null)
848 >                throw new NullPointerException();
849 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
850 >            final Object[] es = queue;
851 >            int i, hi; E e;
852 >            for (i = index, index = hi = fence; i < hi; i++) {
853 >                if ((e = (E) es[i]) == null)
854 >                    break;      // must be CME
855 >                action.accept(e);
856 >            }
857 >            if (modCount != expectedModCount)
858 >                throw new ConcurrentModificationException();
859 >        }
860 >
861 >        public boolean tryAdvance(Consumer<? super E> action) {
862 >            if (action == null)
863 >                throw new NullPointerException();
864 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 >            int i;
866 >            if ((i = index) < fence) {
867 >                index = i + 1;
868 >                E e;
869 >                if ((e = (E) queue[i]) == null
870 >                    || modCount != expectedModCount)
871 >                    throw new ConcurrentModificationException();
872 >                action.accept(e);
873 >                return true;
874 >            }
875 >            return false;
876 >        }
877 >
878 >        public long estimateSize() {
879 >            return getFence() - index;
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884 >        }
885      }
886  
887 +    /**
888 +     * @throws NullPointerException {@inheritDoc}
889 +     */
890 +    public boolean removeIf(Predicate<? super E> filter) {
891 +        Objects.requireNonNull(filter);
892 +        return bulkRemove(filter);
893 +    }
894 +
895 +    /**
896 +     * @throws NullPointerException {@inheritDoc}
897 +     */
898 +    public boolean removeAll(Collection<?> c) {
899 +        Objects.requireNonNull(c);
900 +        return bulkRemove(e -> c.contains(e));
901 +    }
902 +
903 +    /**
904 +     * @throws NullPointerException {@inheritDoc}
905 +     */
906 +    public boolean retainAll(Collection<?> c) {
907 +        Objects.requireNonNull(c);
908 +        return bulkRemove(e -> !c.contains(e));
909 +    }
910 +
911 +    // A tiny bit set implementation
912 +
913 +    private static long[] nBits(int n) {
914 +        return new long[((n - 1) >> 6) + 1];
915 +    }
916 +    private static void setBit(long[] bits, int i) {
917 +        bits[i >> 6] |= 1L << i;
918 +    }
919 +    private static boolean isClear(long[] bits, int i) {
920 +        return (bits[i >> 6] & (1L << i)) == 0;
921 +    }
922 +
923 +    /** Implementation of bulk remove methods. */
924 +    private boolean bulkRemove(Predicate<? super E> filter) {
925 +        final int expectedModCount = ++modCount;
926 +        final Object[] es = queue;
927 +        final int end = size;
928 +        int i;
929 +        // Optimize for initial run of survivors
930 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
931 +            ;
932 +        if (i >= end) {
933 +            if (modCount != expectedModCount)
934 +                throw new ConcurrentModificationException();
935 +            return false;
936 +        }
937 +        // Tolerate predicates that reentrantly access the collection for
938 +        // read (but writers still get CME), so traverse once to find
939 +        // elements to delete, a second pass to physically expunge.
940 +        final int beg = i;
941 +        final long[] deathRow = nBits(end - beg);
942 +        deathRow[0] = 1L;   // set bit 0
943 +        for (i = beg + 1; i < end; i++)
944 +            if (filter.test((E) es[i]))
945 +                setBit(deathRow, i - beg);
946 +        if (modCount != expectedModCount)
947 +            throw new ConcurrentModificationException();
948 +        int w = beg;
949 +        for (i = beg; i < end; i++)
950 +            if (isClear(deathRow, i - beg))
951 +                es[w++] = es[i];
952 +        for (i = size = w; i < end; i++)
953 +            es[i] = null;
954 +        heapify();
955 +        return true;
956 +    }
957 +
958 +    /**
959 +     * @throws NullPointerException {@inheritDoc}
960 +     */
961 +    public void forEach(Consumer<? super E> action) {
962 +        Objects.requireNonNull(action);
963 +        final int expectedModCount = modCount;
964 +        final Object[] es = queue;
965 +        for (int i = 0, n = size; i < n; i++)
966 +            action.accept((E) es[i]);
967 +        if (expectedModCount != modCount)
968 +            throw new ConcurrentModificationException();
969 +    }
970   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines