ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.7 by dl, Tue Jun 24 14:34:30 2003 UTC

# Line 1 | Line 1
1 < package java.util;
2 <
3 < import java.util.*;
1 > package java.util;
2  
3   /**
4 < * An unbounded (resizable) priority queue based on a priority
5 < * heap.The take operation returns the least element with respect to
6 < * the given ordering. (If more than one element is tied for least
7 < * value, one of them is arbitrarily chosen to be returned -- no
8 < * guarantees are made for ordering across ties.) Ordering follows the
9 < * java.util.Collection conventions: Either the elements must be
10 < * Comparable, or a Comparator must be supplied. Comparison failures
11 < * throw ClassCastExceptions during insertions and extractions.
12 < **/
13 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
14 <    public PriorityQueue(int initialCapacity) {}
15 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
4 > * An unbounded priority queue based on a priority heap.  This queue orders
5 > * elements according to an order specified at construction time, which is
6 > * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
7 > * either according to their <i>natural order</i> (see {@link Comparable}), or
8 > * according to a {@link Comparator}, depending on which constructor is used.
9 > * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10 > * minimal element with respect to the specified ordering.  If multiple
11 > * elements are tied for least value, no guarantees are made as to
12 > * which of these elements is returned.
13 > *
14 > * <p>A priority queue has a <i>capacity</i>.  The capacity is the
15 > * size of the array used internally to store the elements on the
16 > * queue.  It is always at least as large as the queue size.  As
17 > * elements are added to a priority queue, its capacity grows
18 > * automatically.  The details of the growth policy are not specified.
19 > *
20 > *<p>Implementation note: this implementation provides O(log(n)) time
21 > *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
22 > *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
23 > *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
24 > *constant time for the retrieval methods (<tt>peek</tt>,
25 > *<tt>element</tt>, and <tt>size</tt>).
26 > *
27 > * <p>This class is a member of the
28 > * <a href="{@docRoot}/../guide/collections/index.html">
29 > * Java Collections Framework</a>.
30 > * @since 1.5
31 > * @author Josh Bloch
32 > */
33 > public class PriorityQueue<E> extends AbstractQueue<E>
34 >                              implements Queue<E> {
35 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
36  
37 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
37 >    /**
38 >     * Priority queue represented as a balanced binary heap: the two children
39 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
40 >     * ordered by comparator, or by the elements' natural ordering, if
41 >     * comparator is null:  For each node n in the heap and each descendant d
42 >     * of n, n <= d.
43 >     *
44 >     * The element with the lowest value is in queue[1], assuming the queue is
45 >     * nonempty.  (A one-based array is used in preference to the traditional
46 >     * zero-based array to simplify parent and child calculations.)
47 >     *
48 >     * queue.length must be >= 2, even if size == 0.
49 >     */
50 >    private transient E[] queue;
51  
52 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
52 >    /**
53 >     * The number of elements in the priority queue.
54 >     */
55 >    private int size = 0;
56  
57 <    public boolean add(E x) {
58 <        return false;
59 <    }
60 <    public boolean offer(E x) {
61 <        return false;
62 <    }
63 <    public boolean remove(Object x) {
64 <        return false;
57 >    /**
58 >     * The comparator, or null if priority queue uses elements'
59 >     * natural ordering.
60 >     */
61 >    private final Comparator<E> comparator;
62 >
63 >    /**
64 >     * The number of times this priority queue has been
65 >     * <i>structurally modified</i>.  See AbstractList for gory details.
66 >     */
67 >    private transient int modCount = 0;
68 >
69 >    /**
70 >     * Create a new priority queue with the default initial capacity
71 >     * (11) that orders its elements according to their natural
72 >     * ordering (using <tt>Comparable</tt>.)
73 >     */
74 >    public PriorityQueue() {
75 >        this(DEFAULT_INITIAL_CAPACITY);
76      }
77  
78 <    public E remove() {
79 <        return null;
78 >    /**
79 >     * Create a new priority queue with the specified initial capacity
80 >     * that orders its elements according to their natural ordering
81 >     * (using <tt>Comparable</tt>.)
82 >     *
83 >     * @param initialCapacity the initial capacity for this priority queue.
84 >     */
85 >    public PriorityQueue(int initialCapacity) {
86 >        this(initialCapacity, null);
87      }
88 <    public Iterator<E> iterator() {
89 <      return null;
88 >
89 >    /**
90 >     * Create a new priority queue with the specified initial capacity (11)
91 >     * that orders its elements according to the specified comparator.
92 >     *
93 >     * @param initialCapacity the initial capacity for this priority queue.
94 >     * @param comparator the comparator used to order this priority queue.
95 >     */
96 >    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
97 >        if (initialCapacity < 1)
98 >            initialCapacity = 1;
99 >        queue = new E[initialCapacity + 1];
100 >        this.comparator = comparator;
101      }
102  
103 <    public E element() {
104 <        return null;
103 >    /**
104 >     * Create a new priority queue containing the elements in the specified
105 >     * collection.  The priority queue has an initial capacity of 110% of the
106 >     * size of the specified collection. If the specified collection
107 >     * implements the {@link Sorted} interface, the priority queue will be
108 >     * sorted according to the same comparator, or according to its elements'
109 >     * natural order if the collection is sorted according to its elements'
110 >     * natural order.  If the specified collection does not implement
111 >     * <tt>Sorted</tt>, the priority queue is ordered according to
112 >     * its elements' natural order.
113 >     *
114 >     * @param initialElements the collection whose elements are to be placed
115 >     *        into this priority queue.
116 >     * @throws ClassCastException if elements of the specified collection
117 >     *         cannot be compared to one another according to the priority
118 >     *         queue's ordering.
119 >     * @throws NullPointerException if the specified collection or an
120 >     *         element of the specified collection is <tt>null</tt>.
121 >     */
122 >    public PriorityQueue(Collection<E> initialElements) {
123 >        int sz = initialElements.size();
124 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
125 >                                            Integer.MAX_VALUE - 1);
126 >        if (initialCapacity < 1)
127 >            initialCapacity = 1;
128 >        queue = new E[initialCapacity + 1];
129 >
130 >        /* Commented out to compile with generics compiler
131 >
132 >        if (initialElements instanceof Sorted) {
133 >            comparator = ((Sorted)initialElements).comparator();
134 >            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
135 >                queue[++size] = i.next();
136 >        } else {
137 >        */
138 >        {
139 >            comparator = null;
140 >            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
141 >                add(i.next());
142 >        }
143      }
144 +
145 +    // Queue Methods
146 +
147 +    /**
148 +     * Remove and return the minimal element from this priority queue
149 +     * if it contains one or more elements, otherwise return
150 +     * <tt>null</tt>.  The term <i>minimal</i> is defined according to
151 +     * this priority queue's order.
152 +     *
153 +     * @return the minimal element from this priority queue if it contains
154 +     *         one or more elements, otherwise <tt>null</tt>.
155 +     */
156      public E poll() {
157 <        return null;
157 >        if (size == 0)
158 >            return null;
159 >        return remove(1);
160      }
161 +
162 +    /**
163 +     * Return, but do not remove, the minimal element from the
164 +     * priority queue, or return <tt>null</tt> if the queue is empty.
165 +     * The term <i>minimal</i> is defined according to this priority
166 +     * queue's order.  This method returns the same object reference
167 +     * that would be returned by by the <tt>poll</tt> method.  The two
168 +     * methods differ in that this method does not remove the element
169 +     * from the priority queue.
170 +     *
171 +     * @return the minimal element from this priority queue if it contains
172 +     *         one or more elements, otherwise <tt>null</tt>.
173 +     */
174      public E peek() {
175 <        return null;
175 >        return queue[1];
176      }
177  
178 <    public boolean isEmpty() {
178 >    // Collection Methods
179 >
180 >    /**
181 >     * Removes a single instance of the specified element from this priority
182 >     * queue, if it is present.  Returns true if this collection contained the
183 >     * specified element (or equivalently, if this collection changed as a
184 >     * result of the call).
185 >     *
186 >     * @param element the element to be removed from this collection,
187 >     * if present.
188 >     * @return <tt>true</tt> if this collection changed as a result of the
189 >     *         call
190 >     * @throws ClassCastException if the specified element cannot be compared
191 >     *            with elements currently in the priority queue according
192 >     *            to the priority queue's ordering.
193 >     * @throws NullPointerException if the specified element is null.
194 >     */
195 >    public boolean remove(Object element) {
196 >        if (element == null)
197 >            throw new NullPointerException();
198 >
199 >        if (comparator == null) {
200 >            for (int i = 1; i <= size; i++) {
201 >                if (((Comparable)queue[i]).compareTo(element) == 0) {
202 >                    remove(i);
203 >                    return true;
204 >                }
205 >            }
206 >        } else {
207 >            for (int i = 1; i <= size; i++) {
208 >                if (comparator.compare(queue[i], (E) element) == 0) {
209 >                    remove(i);
210 >                    return true;
211 >                }
212 >            }
213 >        }
214          return false;
215      }
216 +
217 +    /**
218 +     * Returns an iterator over the elements in this priority queue.  The
219 +     * elements of the priority queue will be returned by this iterator in the
220 +     * order specified by the queue, which is to say the order they would be
221 +     * returned by repeated calls to <tt>poll</tt>.
222 +     *
223 +     * @return an <tt>Iterator</tt> over the elements in this priority queue.
224 +     */
225 +    public Iterator<E> iterator() {
226 +        return new Itr();
227 +    }
228 +
229 +    private class Itr implements Iterator<E> {
230 +        /**
231 +         * Index (into queue array) of element to be returned by
232 +         * subsequent call to next.
233 +         */
234 +        private int cursor = 1;
235 +
236 +        /**
237 +         * Index of element returned by most recent call to next or
238 +         * previous.  Reset to 0 if this element is deleted by a call
239 +         * to remove.
240 +         */
241 +        private int lastRet = 0;
242 +
243 +        /**
244 +         * The modCount value that the iterator believes that the backing
245 +         * List should have.  If this expectation is violated, the iterator
246 +         * has detected concurrent modification.
247 +         */
248 +        private int expectedModCount = modCount;
249 +
250 +        public boolean hasNext() {
251 +            return cursor <= size;
252 +        }
253 +
254 +        public E next() {
255 +            checkForComodification();
256 +            if (cursor > size)
257 +                throw new NoSuchElementException();
258 +            E result = queue[cursor];
259 +            lastRet = cursor++;
260 +            return result;
261 +        }
262 +
263 +        public void remove() {
264 +            if (lastRet == 0)
265 +                throw new IllegalStateException();
266 +            checkForComodification();
267 +
268 +            PriorityQueue.this.remove(lastRet);
269 +            if (lastRet < cursor)
270 +                cursor--;
271 +            lastRet = 0;
272 +            expectedModCount = modCount;
273 +        }
274 +
275 +        final void checkForComodification() {
276 +            if (modCount != expectedModCount)
277 +                throw new ConcurrentModificationException();
278 +        }
279 +    }
280 +
281 +    /**
282 +     * Returns the number of elements in this priority queue.
283 +     *
284 +     * @return the number of elements in this priority queue.
285 +     */
286      public int size() {
287 <        return 0;
287 >        return size;
288 >    }
289 >
290 >    /**
291 >     * Add the specified element to this priority queue.
292 >     *
293 >     * @param element the element to add.
294 >     * @return true
295 >     * @throws ClassCastException if the specified element cannot be compared
296 >     *            with elements currently in the priority queue according
297 >     *            to the priority queue's ordering.
298 >     * @throws NullPointerException if the specified element is null.
299 >     */
300 >    public boolean offer(E element) {
301 >        if (element == null)
302 >            throw new NullPointerException();
303 >        modCount++;
304 >
305 >        // Grow backing store if necessary
306 >        if (++size == queue.length) {
307 >            E[] newQueue = new E[2 * queue.length];
308 >            System.arraycopy(queue, 0, newQueue, 0, size);
309 >            queue = newQueue;
310 >        }
311 >
312 >        queue[size] = element;
313 >        fixUp(size);
314 >        return true;
315 >    }
316 >
317 >    /**
318 >     * Remove all elements from the priority queue.
319 >     */
320 >    public void clear() {
321 >        modCount++;
322 >
323 >        // Null out element references to prevent memory leak
324 >        for (int i=1; i<=size; i++)
325 >            queue[i] = null;
326 >
327 >        size = 0;
328 >    }
329 >
330 >    /**
331 >     * Removes and returns the ith element from queue.  Recall
332 >     * that queue is one-based, so 1 <= i <= size.
333 >     *
334 >     * XXX: Could further special-case i==size, but is it worth it?
335 >     * XXX: Could special-case i==0, but is it worth it?
336 >     */
337 >    private E remove(int i) {
338 >        assert i <= size;
339 >        modCount++;
340 >
341 >        E result = queue[i];
342 >        queue[i] = queue[size];
343 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
344 >        if (i <= size)
345 >            fixDown(i);
346 >        return result;
347 >    }
348 >
349 >    /**
350 >     * Establishes the heap invariant (described above) assuming the heap
351 >     * satisfies the invariant except possibly for the leaf-node indexed by k
352 >     * (which may have a nextExecutionTime less than its parent's).
353 >     *
354 >     * This method functions by "promoting" queue[k] up the hierarchy
355 >     * (by swapping it with its parent) repeatedly until queue[k]
356 >     * is greater than or equal to its parent.
357 >     */
358 >    private void fixUp(int k) {
359 >        if (comparator == null) {
360 >            while (k > 1) {
361 >                int j = k >> 1;
362 >                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
363 >                    break;
364 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
365 >                k = j;
366 >            }
367 >        } else {
368 >            while (k > 1) {
369 >                int j = k >> 1;
370 >                if (comparator.compare(queue[j], queue[k]) <= 0)
371 >                    break;
372 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
373 >                k = j;
374 >            }
375 >        }
376      }
377 <    public Object[] toArray() {
378 <        return null;
377 >
378 >    /**
379 >     * Establishes the heap invariant (described above) in the subtree
380 >     * rooted at k, which is assumed to satisfy the heap invariant except
381 >     * possibly for node k itself (which may be greater than its children).
382 >     *
383 >     * This method functions by "demoting" queue[k] down the hierarchy
384 >     * (by swapping it with its smaller child) repeatedly until queue[k]
385 >     * is less than or equal to its children.
386 >     */
387 >    private void fixDown(int k) {
388 >        int j;
389 >        if (comparator == null) {
390 >            while ((j = k << 1) <= size) {
391 >                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
392 >                    j++; // j indexes smallest kid
393 >                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
394 >                    break;
395 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
396 >                k = j;
397 >            }
398 >        } else {
399 >            while ((j = k << 1) <= size) {
400 >                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
401 >                    j++; // j indexes smallest kid
402 >                if (comparator.compare(queue[k], queue[j]) <= 0)
403 >                    break;
404 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
405 >                k = j;
406 >            }
407 >        }
408 >    }
409 >
410 >    /**
411 >     * Returns the comparator associated with this priority queue, or
412 >     * <tt>null</tt> if it uses its elements' natural ordering.
413 >     *
414 >     * @return the comparator associated with this priority queue, or
415 >     *         <tt>null</tt> if it uses its elements' natural ordering.
416 >     */
417 >    Comparator comparator() {
418 >        return comparator;
419      }
420  
421 <    public <T> T[] toArray(T[] array) {
422 <        return null;
421 >    /**
422 >     * Save the state of the instance to a stream (that
423 >     * is, serialize it).
424 >     *
425 >     * @serialData The length of the array backing the instance is
426 >     * emitted (int), followed by all of its elements (each an
427 >     * <tt>Object</tt>) in the proper order.
428 >     * @param s the stream
429 >     */
430 >    private synchronized void writeObject(java.io.ObjectOutputStream s)
431 >        throws java.io.IOException{
432 >        // Write out element count, and any hidden stuff
433 >        s.defaultWriteObject();
434 >
435 >        // Write out array length
436 >        s.writeInt(queue.length);
437 >
438 >        // Write out all elements in the proper order.
439 >        for (int i=0; i<size; i++)
440 >            s.writeObject(queue[i]);
441 >    }
442 >
443 >    /**
444 >     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
445 >     * deserialize it).
446 >     * @param s the stream
447 >     */
448 >    private synchronized void readObject(java.io.ObjectInputStream s)
449 >        throws java.io.IOException, ClassNotFoundException {
450 >        // Read in size, and any hidden stuff
451 >        s.defaultReadObject();
452 >
453 >        // Read in array length and allocate array
454 >        int arrayLength = s.readInt();
455 >        queue = new E[arrayLength];
456 >
457 >        // Read in all elements in the proper order.
458 >        for (int i=0; i<size; i++)
459 >            queue[i] = (E)s.readObject();
460      }
461  
462   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines