ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.84 by jsr166, Sat Jan 19 18:11:56 2013 UTC vs.
Revision 1.131 by jsr166, Wed May 22 17:36:58 2019 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
2 > * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3   * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5   * This code is free software; you can redistribute it and/or modify it
# Line 24 | Line 24
24   */
25  
26   package java.util;
27 < import java.util.stream.Stream;
28 < import java.util.Spliterator;
29 < import java.util.stream.Streams;
30 < import java.util.function.Block;
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31 > import jdk.internal.util.ArraysSupport;
32  
33   /**
34   * An unbounded priority {@linkplain Queue queue} based on a priority heap.
# Line 56 | Line 57 | import java.util.function.Block;
57   * <p>This class and its iterator implement all of the
58   * <em>optional</em> methods of the {@link Collection} and {@link
59   * Iterator} interfaces.  The Iterator provided in method {@link
60 < * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62   * the priority queue in any particular order. If you need ordered
63   * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64   *
# Line 67 | Line 69 | import java.util.function.Block;
69   * java.util.concurrent.PriorityBlockingQueue} class.
70   *
71   * <p>Implementation note: this implementation provides
72 < * O(log(n)) time for the enqueing and dequeing methods
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73   * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74   * linear time for the {@code remove(Object)} and {@code contains(Object)}
75   * methods; and constant time for the retrieval methods
76   * ({@code peek}, {@code element}, and {@code size}).
77   *
78   * <p>This class is a member of the
79 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80   * Java Collections Framework</a>.
81   *
82   * @since 1.5
83   * @author Josh Bloch, Doug Lea
84 < * @param <E> the type of elements held in this collection
84 > * @param <E> the type of elements held in this queue
85   */
86 + @SuppressWarnings("unchecked")
87   public class PriorityQueue<E> extends AbstractQueue<E>
88      implements java.io.Serializable {
89  
# Line 101 | Line 104 | public class PriorityQueue<E> extends Ab
104      /**
105       * The number of elements in the priority queue.
106       */
107 <    private int size = 0;
107 >    int size;
108  
109      /**
110       * The comparator, or null if priority queue uses elements'
# Line 113 | Line 116 | public class PriorityQueue<E> extends Ab
116       * The number of times this priority queue has been
117       * <i>structurally modified</i>.  See AbstractList for gory details.
118       */
119 <    transient int modCount = 0; // non-private to simplify nested class access
119 >    transient int modCount;     // non-private to simplify nested class access
120  
121      /**
122       * Creates a {@code PriorityQueue} with the default initial
# Line 138 | Line 141 | public class PriorityQueue<E> extends Ab
141      }
142  
143      /**
144 +     * Creates a {@code PriorityQueue} with the default initial capacity and
145 +     * whose elements are ordered according to the specified comparator.
146 +     *
147 +     * @param  comparator the comparator that will be used to order this
148 +     *         priority queue.  If {@code null}, the {@linkplain Comparable
149 +     *         natural ordering} of the elements will be used.
150 +     * @since 1.8
151 +     */
152 +    public PriorityQueue(Comparator<? super E> comparator) {
153 +        this(DEFAULT_INITIAL_CAPACITY, comparator);
154 +    }
155 +
156 +    /**
157       * Creates a {@code PriorityQueue} with the specified initial capacity
158       * that orders its elements according to the specified comparator.
159       *
# Line 174 | Line 190 | public class PriorityQueue<E> extends Ab
190       * @throws NullPointerException if the specified collection or any
191       *         of its elements are null
192       */
177    @SuppressWarnings("unchecked")
193      public PriorityQueue(Collection<? extends E> c) {
194          if (c instanceof SortedSet<?>) {
195              SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
# Line 206 | Line 221 | public class PriorityQueue<E> extends Ab
221       * @throws NullPointerException if the specified priority queue or any
222       *         of its elements are null
223       */
209    @SuppressWarnings("unchecked")
224      public PriorityQueue(PriorityQueue<? extends E> c) {
225          this.comparator = (Comparator<? super E>) c.comparator();
226          initFromPriorityQueue(c);
# Line 225 | Line 239 | public class PriorityQueue<E> extends Ab
239       * @throws NullPointerException if the specified sorted set or any
240       *         of its elements are null
241       */
228    @SuppressWarnings("unchecked")
242      public PriorityQueue(SortedSet<? extends E> c) {
243          this.comparator = (Comparator<? super E>) c.comparator();
244          initElementsFromCollection(c);
245      }
246  
247 +    /** Ensures that queue[0] exists, helping peek() and poll(). */
248 +    private static Object[] ensureNonEmpty(Object[] es) {
249 +        return (es.length > 0) ? es : new Object[1];
250 +    }
251 +
252      private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
253          if (c.getClass() == PriorityQueue.class) {
254 <            this.queue = c.toArray();
254 >            this.queue = ensureNonEmpty(c.toArray());
255              this.size = c.size();
256          } else {
257              initFromCollection(c);
# Line 241 | Line 259 | public class PriorityQueue<E> extends Ab
259      }
260  
261      private void initElementsFromCollection(Collection<? extends E> c) {
262 <        Object[] a = c.toArray();
262 >        Object[] es = c.toArray();
263 >        int len = es.length;
264          // If c.toArray incorrectly doesn't return Object[], copy it.
265 <        if (a.getClass() != Object[].class)
266 <            a = Arrays.copyOf(a, a.length, Object[].class);
248 <        int len = a.length;
265 >        if (es.getClass() != Object[].class)
266 >            es = Arrays.copyOf(es, len, Object[].class);
267          if (len == 1 || this.comparator != null)
268 <            for (int i = 0; i < len; i++)
269 <                if (a[i] == null)
268 >            for (Object e : es)
269 >                if (e == null)
270                      throw new NullPointerException();
271 <        this.queue = a;
272 <        this.size = a.length;
271 >        this.queue = ensureNonEmpty(es);
272 >        this.size = len;
273      }
274  
275      /**
# Line 265 | Line 283 | public class PriorityQueue<E> extends Ab
283      }
284  
285      /**
268     * The maximum size of array to allocate.
269     * Some VMs reserve some header words in an array.
270     * Attempts to allocate larger arrays may result in
271     * OutOfMemoryError: Requested array size exceeds VM limit
272     */
273    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
274
275    /**
286       * Increases the capacity of the array.
287       *
288       * @param minCapacity the desired minimum capacity
# Line 280 | Line 290 | public class PriorityQueue<E> extends Ab
290      private void grow(int minCapacity) {
291          int oldCapacity = queue.length;
292          // Double size if small; else grow by 50%
293 <        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
294 <                                         (oldCapacity + 2) :
295 <                                         (oldCapacity >> 1));
296 <        // overflow-conscious code
287 <        if (newCapacity - MAX_ARRAY_SIZE > 0)
288 <            newCapacity = hugeCapacity(minCapacity);
293 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
294 >                minCapacity - oldCapacity, /* minimum growth */
295 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
296 >                                           /* preferred growth */);
297          queue = Arrays.copyOf(queue, newCapacity);
298      }
299  
292    private static int hugeCapacity(int minCapacity) {
293        if (minCapacity < 0) // overflow
294            throw new OutOfMemoryError();
295        return (minCapacity > MAX_ARRAY_SIZE) ?
296            Integer.MAX_VALUE :
297            MAX_ARRAY_SIZE;
298    }
299
300      /**
301       * Inserts the specified element into this priority queue.
302       *
# Line 326 | Line 326 | public class PriorityQueue<E> extends Ab
326          int i = size;
327          if (i >= queue.length)
328              grow(i + 1);
329 +        siftUp(i, e);
330          size = i + 1;
330        if (i == 0)
331            queue[0] = e;
332        else
333            siftUp(i, e);
331          return true;
332      }
333  
337    @SuppressWarnings("unchecked")
334      public E peek() {
335 <        return (size == 0) ? null : (E) queue[0];
335 >        return (E) queue[0];
336      }
337  
338      private int indexOf(Object o) {
339          if (o != null) {
340 <            for (int i = 0; i < size; i++)
341 <                if (o.equals(queue[i]))
340 >            final Object[] es = queue;
341 >            for (int i = 0, n = size; i < n; i++)
342 >                if (o.equals(es[i]))
343                      return i;
344          }
345          return -1;
# Line 370 | Line 367 | public class PriorityQueue<E> extends Ab
367      }
368  
369      /**
370 <     * Version of remove using reference equality, not equals.
374 <     * Needed by iterator.remove.
370 >     * Identity-based version for use in Itr.remove.
371       *
372       * @param o element to be removed from this queue, if present
377     * @return {@code true} if removed
373       */
374 <    boolean removeEq(Object o) {
375 <        for (int i = 0; i < size; i++) {
376 <            if (o == queue[i]) {
374 >    void removeEq(Object o) {
375 >        final Object[] es = queue;
376 >        for (int i = 0, n = size; i < n; i++) {
377 >            if (o == es[i]) {
378                  removeAt(i);
379 <                return true;
379 >                break;
380              }
381          }
386        return false;
382      }
383  
384      /**
# Line 395 | Line 390 | public class PriorityQueue<E> extends Ab
390       * @return {@code true} if this queue contains the specified element
391       */
392      public boolean contains(Object o) {
393 <        return indexOf(o) != -1;
393 >        return indexOf(o) >= 0;
394      }
395  
396      /**
# Line 437 | Line 432 | public class PriorityQueue<E> extends Ab
432       * The following code can be used to dump the queue into a newly
433       * allocated array of {@code String}:
434       *
435 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
435 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
436       *
437       * Note that {@code toArray(new Object[0])} is identical in function to
438       * {@code toArray()}.
# Line 451 | Line 446 | public class PriorityQueue<E> extends Ab
446       *         this queue
447       * @throws NullPointerException if the specified array is null
448       */
454    @SuppressWarnings("unchecked")
449      public <T> T[] toArray(T[] a) {
450 +        final int size = this.size;
451          if (a.length < size)
452              // Make a new array of a's runtime type, but my contents:
453              return (T[]) Arrays.copyOf(queue, size, a.getClass());
# Line 477 | Line 472 | public class PriorityQueue<E> extends Ab
472           * Index (into queue array) of element to be returned by
473           * subsequent call to next.
474           */
475 <        private int cursor = 0;
475 >        private int cursor;
476  
477          /**
478           * Index of element returned by most recent call to next,
# Line 497 | Line 492 | public class PriorityQueue<E> extends Ab
492           * We expect that most iterations, even those involving removals,
493           * will not need to store elements in this field.
494           */
495 <        private ArrayDeque<E> forgetMeNot = null;
495 >        private ArrayDeque<E> forgetMeNot;
496  
497          /**
498           * Element returned by the most recent call to next iff that
499           * element was drawn from the forgetMeNot list.
500           */
501 <        private E lastRetElt = null;
501 >        private E lastRetElt;
502  
503          /**
504           * The modCount value that the iterator believes that the backing
# Line 512 | Line 507 | public class PriorityQueue<E> extends Ab
507           */
508          private int expectedModCount = modCount;
509  
510 +        Itr() {}                        // prevent access constructor creation
511 +
512          public boolean hasNext() {
513              return cursor < size ||
514                  (forgetMeNot != null && !forgetMeNot.isEmpty());
515          }
516  
520        @SuppressWarnings("unchecked")
517          public E next() {
518              if (expectedModCount != modCount)
519                  throw new ConcurrentModificationException();
# Line 542 | Line 538 | public class PriorityQueue<E> extends Ab
538                      cursor--;
539                  else {
540                      if (forgetMeNot == null)
541 <                        forgetMeNot = new ArrayDeque<E>();
541 >                        forgetMeNot = new ArrayDeque<>();
542                      forgetMeNot.add(moved);
543                  }
544              } else if (lastRetElt != null) {
# Line 565 | Line 561 | public class PriorityQueue<E> extends Ab
561       */
562      public void clear() {
563          modCount++;
564 <        for (int i = 0; i < size; i++)
565 <            queue[i] = null;
564 >        final Object[] es = queue;
565 >        for (int i = 0, n = size; i < n; i++)
566 >            es[i] = null;
567          size = 0;
568      }
569  
573    @SuppressWarnings("unchecked")
570      public E poll() {
571 <        if (size == 0)
572 <            return null;
573 <        int s = --size;
574 <        modCount++;
575 <        E result = (E) queue[0];
576 <        E x = (E) queue[s];
577 <        queue[s] = null;
578 <        if (s != 0)
579 <            siftDown(0, x);
571 >        final Object[] es;
572 >        final E result;
573 >
574 >        if ((result = (E) ((es = queue)[0])) != null) {
575 >            modCount++;
576 >            final int n;
577 >            final E x = (E) es[(n = --size)];
578 >            es[n] = null;
579 >            if (n > 0) {
580 >                final Comparator<? super E> cmp;
581 >                if ((cmp = comparator) == null)
582 >                    siftDownComparable(0, x, es, n);
583 >                else
584 >                    siftDownUsingComparator(0, x, es, n, cmp);
585 >            }
586 >        }
587          return result;
588      }
589  
# Line 596 | Line 599 | public class PriorityQueue<E> extends Ab
599       * position before i. This fact is used by iterator.remove so as to
600       * avoid missing traversing elements.
601       */
602 <    @SuppressWarnings("unchecked")
600 <    private E removeAt(int i) {
602 >    E removeAt(int i) {
603          // assert i >= 0 && i < size;
604 +        final Object[] es = queue;
605          modCount++;
606          int s = --size;
607          if (s == i) // removed last element
608 <            queue[i] = null;
608 >            es[i] = null;
609          else {
610 <            E moved = (E) queue[s];
611 <            queue[s] = null;
610 >            E moved = (E) es[s];
611 >            es[s] = null;
612              siftDown(i, moved);
613 <            if (queue[i] == moved) {
613 >            if (es[i] == moved) {
614                  siftUp(i, moved);
615 <                if (queue[i] != moved)
615 >                if (es[i] != moved)
616                      return moved;
617              }
618          }
# Line 621 | Line 624 | public class PriorityQueue<E> extends Ab
624       * promoting x up the tree until it is greater than or equal to
625       * its parent, or is the root.
626       *
627 <     * To simplify and speed up coercions and comparisons. the
627 >     * To simplify and speed up coercions and comparisons, the
628       * Comparable and Comparator versions are separated into different
629       * methods that are otherwise identical. (Similarly for siftDown.)
630       *
# Line 630 | Line 633 | public class PriorityQueue<E> extends Ab
633       */
634      private void siftUp(int k, E x) {
635          if (comparator != null)
636 <            siftUpUsingComparator(k, x);
636 >            siftUpUsingComparator(k, x, queue, comparator);
637          else
638 <            siftUpComparable(k, x);
638 >            siftUpComparable(k, x, queue);
639      }
640  
641 <    @SuppressWarnings("unchecked")
642 <    private void siftUpComparable(int k, E x) {
640 <        Comparable<? super E> key = (Comparable<? super E>) x;
641 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
642 >        Comparable<? super T> key = (Comparable<? super T>) x;
643          while (k > 0) {
644              int parent = (k - 1) >>> 1;
645 <            Object e = queue[parent];
646 <            if (key.compareTo((E) e) >= 0)
645 >            Object e = es[parent];
646 >            if (key.compareTo((T) e) >= 0)
647                  break;
648 <            queue[k] = e;
648 >            es[k] = e;
649              k = parent;
650          }
651 <        queue[k] = key;
651 >        es[k] = key;
652      }
653  
654 <    @SuppressWarnings("unchecked")
655 <    private void siftUpUsingComparator(int k, E x) {
654 >    private static <T> void siftUpUsingComparator(
655 >        int k, T x, Object[] es, Comparator<? super T> cmp) {
656          while (k > 0) {
657              int parent = (k - 1) >>> 1;
658 <            Object e = queue[parent];
659 <            if (comparator.compare(x, (E) e) >= 0)
658 >            Object e = es[parent];
659 >            if (cmp.compare(x, (T) e) >= 0)
660                  break;
661 <            queue[k] = e;
661 >            es[k] = e;
662              k = parent;
663          }
664 <        queue[k] = x;
664 >        es[k] = x;
665      }
666  
667      /**
# Line 672 | Line 674 | public class PriorityQueue<E> extends Ab
674       */
675      private void siftDown(int k, E x) {
676          if (comparator != null)
677 <            siftDownUsingComparator(k, x);
677 >            siftDownUsingComparator(k, x, queue, size, comparator);
678          else
679 <            siftDownComparable(k, x);
679 >            siftDownComparable(k, x, queue, size);
680      }
681  
682 <    @SuppressWarnings("unchecked")
683 <    private void siftDownComparable(int k, E x) {
684 <        Comparable<? super E> key = (Comparable<? super E>)x;
685 <        int half = size >>> 1;        // loop while a non-leaf
682 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
683 >        // assert n > 0;
684 >        Comparable<? super T> key = (Comparable<? super T>)x;
685 >        int half = n >>> 1;           // loop while a non-leaf
686          while (k < half) {
687              int child = (k << 1) + 1; // assume left child is least
688 <            Object c = queue[child];
688 >            Object c = es[child];
689              int right = child + 1;
690 <            if (right < size &&
691 <                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
692 <                c = queue[child = right];
693 <            if (key.compareTo((E) c) <= 0)
690 >            if (right < n &&
691 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
692 >                c = es[child = right];
693 >            if (key.compareTo((T) c) <= 0)
694                  break;
695 <            queue[k] = c;
695 >            es[k] = c;
696              k = child;
697          }
698 <        queue[k] = key;
698 >        es[k] = key;
699      }
700  
701 <    @SuppressWarnings("unchecked")
702 <    private void siftDownUsingComparator(int k, E x) {
703 <        int half = size >>> 1;
701 >    private static <T> void siftDownUsingComparator(
702 >        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
703 >        // assert n > 0;
704 >        int half = n >>> 1;
705          while (k < half) {
706              int child = (k << 1) + 1;
707 <            Object c = queue[child];
707 >            Object c = es[child];
708              int right = child + 1;
709 <            if (right < size &&
710 <                comparator.compare((E) c, (E) queue[right]) > 0)
711 <                c = queue[child = right];
709 <            if (comparator.compare(x, (E) c) <= 0)
709 >            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
710 >                c = es[child = right];
711 >            if (cmp.compare(x, (T) c) <= 0)
712                  break;
713 <            queue[k] = c;
713 >            es[k] = c;
714              k = child;
715          }
716 <        queue[k] = x;
716 >        es[k] = x;
717      }
718  
719      /**
720       * Establishes the heap invariant (described above) in the entire tree,
721       * assuming nothing about the order of the elements prior to the call.
722 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
723       */
721    @SuppressWarnings("unchecked")
724      private void heapify() {
725 <        for (int i = (size >>> 1) - 1; i >= 0; i--)
726 <            siftDown(i, (E) queue[i]);
725 >        final Object[] es = queue;
726 >        int n = size, i = (n >>> 1) - 1;
727 >        final Comparator<? super E> cmp;
728 >        if ((cmp = comparator) == null)
729 >            for (; i >= 0; i--)
730 >                siftDownComparable(i, (E) es[i], es, n);
731 >        else
732 >            for (; i >= 0; i--)
733 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
734      }
735  
736      /**
# Line 740 | Line 749 | public class PriorityQueue<E> extends Ab
749      /**
750       * Saves this queue to a stream (that is, serializes it).
751       *
752 +     * @param s the stream
753 +     * @throws java.io.IOException if an I/O error occurs
754       * @serialData The length of the array backing the instance is
755       *             emitted (int), followed by all of its elements
756       *             (each an {@code Object}) in the proper order.
746     * @param s the stream
757       */
758      private void writeObject(java.io.ObjectOutputStream s)
759          throws java.io.IOException {
# Line 754 | Line 764 | public class PriorityQueue<E> extends Ab
764          s.writeInt(Math.max(2, size + 1));
765  
766          // Write out all elements in the "proper order".
767 <        for (int i = 0; i < size; i++)
768 <            s.writeObject(queue[i]);
767 >        final Object[] es = queue;
768 >        for (int i = 0, n = size; i < n; i++)
769 >            s.writeObject(es[i]);
770      }
771  
772      /**
# Line 763 | Line 774 | public class PriorityQueue<E> extends Ab
774       * (that is, deserializes it).
775       *
776       * @param s the stream
777 +     * @throws ClassNotFoundException if the class of a serialized object
778 +     *         could not be found
779 +     * @throws java.io.IOException if an I/O error occurs
780       */
781      private void readObject(java.io.ObjectInputStream s)
782          throws java.io.IOException, ClassNotFoundException {
# Line 772 | Line 786 | public class PriorityQueue<E> extends Ab
786          // Read in (and discard) array length
787          s.readInt();
788  
789 <        queue = new Object[size];
789 >        jsr166.Platform.checkArray(s, Object[].class, size);
790 >        final Object[] es = queue = new Object[Math.max(size, 1)];
791  
792          // Read in all elements.
793 <        for (int i = 0; i < size; i++)
794 <            queue[i] = s.readObject();
793 >        for (int i = 0, n = size; i < n; i++)
794 >            es[i] = s.readObject();
795  
796          // Elements are guaranteed to be in "proper order", but the
797          // spec has never explained what that might be.
798          heapify();
799      }
800  
801 <    // wrapping constructor in method avoids transient javac problems
802 <    final PriorityQueueSpliterator<E> spliterator(int origin, int fence,
803 <                                                  int expectedModCount) {
804 <        return new PriorityQueueSpliterator<E>(this, origin, fence,
805 <                                               expectedModCount);
806 <    }
807 <
808 <    public Stream<E> stream() {
809 <        int flags = Streams.STREAM_IS_SIZED;
810 <        return Streams.stream
811 <            (() -> spliterator(0, size, modCount), flags);
812 <    }
813 <    public Stream<E> parallelStream() {
814 <        int flags = Streams.STREAM_IS_SIZED;
815 <        return Streams.parallelStream
816 <            (() -> spliterator(0, size, modCount), flags);
817 <    }
818 <
819 <    /** Index-based split-by-two Spliterator */
820 <    static final class PriorityQueueSpliterator<E>
821 <        implements Spliterator<E>, Iterator<E> {
822 <        private final PriorityQueue<E> pq;
823 <        private int index;           // current index, modified on advance/split
824 <        private final int fence;     // one past last index
825 <        private final int expectedModCount; // for comodification checks
826 <
827 <        /** Create new spliterator covering the given  range */
813 <        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
814 <                             int expectedModCount) {
815 <            this.pq = pq; this.index = origin; this.fence = fence;
801 >    /**
802 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 >     * queue. The spliterator does not traverse elements in any particular order
805 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 >     *
807 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 >     * Overriding implementations should document the reporting of additional
810 >     * characteristic values.
811 >     *
812 >     * @return a {@code Spliterator} over the elements in this queue
813 >     * @since 1.8
814 >     */
815 >    public final Spliterator<E> spliterator() {
816 >        return new PriorityQueueSpliterator(0, -1, 0);
817 >    }
818 >
819 >    final class PriorityQueueSpliterator implements Spliterator<E> {
820 >        private int index;            // current index, modified on advance/split
821 >        private int fence;            // -1 until first use
822 >        private int expectedModCount; // initialized when fence set
823 >
824 >        /** Creates new spliterator covering the given range. */
825 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
826 >            this.index = origin;
827 >            this.fence = fence;
828              this.expectedModCount = expectedModCount;
829          }
830  
831 <        public PriorityQueueSpliterator<E> trySplit() {
832 <            int lo = index, mid = (lo + fence) >>> 1;
831 >        private int getFence() { // initialize fence to size on first use
832 >            int hi;
833 >            if ((hi = fence) < 0) {
834 >                expectedModCount = modCount;
835 >                hi = fence = size;
836 >            }
837 >            return hi;
838 >        }
839 >
840 >        public PriorityQueueSpliterator trySplit() {
841 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
842              return (lo >= mid) ? null :
843 <                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
823 <                                            expectedModCount);
843 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
844          }
845  
846 <        public void forEach(Block<? super E> block) {
847 <            Object[] a; int i, hi; // hoist accesses and checks from loop
828 <            if (block == null)
846 >        public void forEachRemaining(Consumer<? super E> action) {
847 >            if (action == null)
848                  throw new NullPointerException();
849 <            if ((a = pq.queue).length >= (hi = fence) &&
850 <                (i = index) >= 0 && i < hi) {
851 <                index = hi;
852 <                do {
853 <                    @SuppressWarnings("unchecked") E e = (E) a[i];
854 <                    block.accept(e);
855 <                } while (++i < hi);
837 <                if (pq.modCount != expectedModCount)
838 <                    throw new ConcurrentModificationException();
849 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
850 >            final Object[] es = queue;
851 >            int i, hi; E e;
852 >            for (i = index, index = hi = fence; i < hi; i++) {
853 >                if ((e = (E) es[i]) == null)
854 >                    break;      // must be CME
855 >                action.accept(e);
856              }
857 +            if (modCount != expectedModCount)
858 +                throw new ConcurrentModificationException();
859          }
860  
861 <        public boolean tryAdvance(Block<? super E> block) {
862 <            if (index >= 0 && index < fence) {
863 <                if (pq.modCount != expectedModCount)
861 >        public boolean tryAdvance(Consumer<? super E> action) {
862 >            if (action == null)
863 >                throw new NullPointerException();
864 >            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 >            int i;
866 >            if ((i = index) < fence) {
867 >                index = i + 1;
868 >                E e;
869 >                if ((e = (E) queue[i]) == null
870 >                    || modCount != expectedModCount)
871                      throw new ConcurrentModificationException();
872 <                @SuppressWarnings("unchecked") E e =
847 <                    (E)pq.queue[index++];
848 <                block.accept(e);
872 >                action.accept(e);
873                  return true;
874              }
875              return false;
876          }
877  
878 <        public long estimateSize() { return (long)(fence - index); }
879 <        public boolean hasExactSize() { return true; }
880 <        public boolean hasExactSplits() { return true; }
881 <
882 <        // Iterator support
883 <        public Iterator<E> iterator() { return this; }
884 <        public void remove() { throw new UnsupportedOperationException(); }
885 <        public boolean hasNext() { return index >= 0 && index < fence; }
878 >        public long estimateSize() {
879 >            return getFence() - index;
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
884 >        }
885 >    }
886  
887 <        public E next() {
888 <            if (index < 0 || index >= fence)
889 <                throw new NoSuchElementException();
890 <            if (pq.modCount != expectedModCount)
887 >    /**
888 >     * @throws NullPointerException {@inheritDoc}
889 >     */
890 >    public boolean removeIf(Predicate<? super E> filter) {
891 >        Objects.requireNonNull(filter);
892 >        return bulkRemove(filter);
893 >    }
894 >
895 >    /**
896 >     * @throws NullPointerException {@inheritDoc}
897 >     */
898 >    public boolean removeAll(Collection<?> c) {
899 >        Objects.requireNonNull(c);
900 >        return bulkRemove(e -> c.contains(e));
901 >    }
902 >
903 >    /**
904 >     * @throws NullPointerException {@inheritDoc}
905 >     */
906 >    public boolean retainAll(Collection<?> c) {
907 >        Objects.requireNonNull(c);
908 >        return bulkRemove(e -> !c.contains(e));
909 >    }
910 >
911 >    // A tiny bit set implementation
912 >
913 >    private static long[] nBits(int n) {
914 >        return new long[((n - 1) >> 6) + 1];
915 >    }
916 >    private static void setBit(long[] bits, int i) {
917 >        bits[i >> 6] |= 1L << i;
918 >    }
919 >    private static boolean isClear(long[] bits, int i) {
920 >        return (bits[i >> 6] & (1L << i)) == 0;
921 >    }
922 >
923 >    /** Implementation of bulk remove methods. */
924 >    private boolean bulkRemove(Predicate<? super E> filter) {
925 >        final int expectedModCount = ++modCount;
926 >        final Object[] es = queue;
927 >        final int end = size;
928 >        int i;
929 >        // Optimize for initial run of survivors
930 >        for (i = 0; i < end && !filter.test((E) es[i]); i++)
931 >            ;
932 >        if (i >= end) {
933 >            if (modCount != expectedModCount)
934                  throw new ConcurrentModificationException();
935 <            @SuppressWarnings("unchecked") E e =
869 <                (E) pq.queue[index++];
870 <            return e;
935 >            return false;
936          }
937 +        // Tolerate predicates that reentrantly access the collection for
938 +        // read (but writers still get CME), so traverse once to find
939 +        // elements to delete, a second pass to physically expunge.
940 +        final int beg = i;
941 +        final long[] deathRow = nBits(end - beg);
942 +        deathRow[0] = 1L;   // set bit 0
943 +        for (i = beg + 1; i < end; i++)
944 +            if (filter.test((E) es[i]))
945 +                setBit(deathRow, i - beg);
946 +        if (modCount != expectedModCount)
947 +            throw new ConcurrentModificationException();
948 +        int w = beg;
949 +        for (i = beg; i < end; i++)
950 +            if (isClear(deathRow, i - beg))
951 +                es[w++] = es[i];
952 +        for (i = size = w; i < end; i++)
953 +            es[i] = null;
954 +        heapify();
955 +        return true;
956 +    }
957 +
958 +    /**
959 +     * @throws NullPointerException {@inheritDoc}
960 +     */
961 +    public void forEach(Consumer<? super E> action) {
962 +        Objects.requireNonNull(action);
963 +        final int expectedModCount = modCount;
964 +        final Object[] es = queue;
965 +        for (int i = 0, n = size; i < n; i++)
966 +            action.accept((E) es[i]);
967 +        if (expectedModCount != modCount)
968 +            throw new ConcurrentModificationException();
969      }
970   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines