ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.103
Committed: Wed Dec 31 09:37:20 2014 UTC (9 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.102: +0 -1 lines
Log Message:
remove unused/redundant imports

File Contents

# Content
1 /*
2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29
30 /**
31 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 * The elements of the priority queue are ordered according to their
33 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 * provided at queue construction time, depending on which constructor is
35 * used. A priority queue does not permit {@code null} elements.
36 * A priority queue relying on natural ordering also does not permit
37 * insertion of non-comparable objects (doing so may result in
38 * {@code ClassCastException}).
39 *
40 * <p>The <em>head</em> of this queue is the <em>least</em> element
41 * with respect to the specified ordering. If multiple elements are
42 * tied for least value, the head is one of those elements -- ties are
43 * broken arbitrarily. The queue retrieval operations {@code poll},
44 * {@code remove}, {@code peek}, and {@code element} access the
45 * element at the head of the queue.
46 *
47 * <p>A priority queue is unbounded, but has an internal
48 * <i>capacity</i> governing the size of an array used to store the
49 * elements on the queue. It is always at least as large as the queue
50 * size. As elements are added to a priority queue, its capacity
51 * grows automatically. The details of the growth policy are not
52 * specified.
53 *
54 * <p>This class and its iterator implement all of the
55 * <em>optional</em> methods of the {@link Collection} and {@link
56 * Iterator} interfaces. The Iterator provided in method {@link
57 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 * the priority queue in any particular order. If you need ordered
59 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60 *
61 * <p><strong>Note that this implementation is not synchronized.</strong>
62 * Multiple threads should not access a {@code PriorityQueue}
63 * instance concurrently if any of the threads modifies the queue.
64 * Instead, use the thread-safe {@link
65 * java.util.concurrent.PriorityBlockingQueue} class.
66 *
67 * <p>Implementation note: this implementation provides
68 * O(log(n)) time for the enqueuing and dequeuing methods
69 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70 * linear time for the {@code remove(Object)} and {@code contains(Object)}
71 * methods; and constant time for the retrieval methods
72 * ({@code peek}, {@code element}, and {@code size}).
73 *
74 * <p>This class is a member of the
75 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76 * Java Collections Framework</a>.
77 *
78 * @since 1.5
79 * @author Josh Bloch, Doug Lea
80 * @param <E> the type of elements held in this queue
81 */
82 public class PriorityQueue<E> extends AbstractQueue<E>
83 implements java.io.Serializable {
84
85 private static final long serialVersionUID = -7720805057305804111L;
86
87 private static final int DEFAULT_INITIAL_CAPACITY = 11;
88
89 /**
90 * Priority queue represented as a balanced binary heap: the two
91 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
92 * priority queue is ordered by comparator, or by the elements'
93 * natural ordering, if comparator is null: For each node n in the
94 * heap and each descendant d of n, n <= d. The element with the
95 * lowest value is in queue[0], assuming the queue is nonempty.
96 */
97 transient Object[] queue; // non-private to simplify nested class access
98
99 /**
100 * The number of elements in the priority queue.
101 */
102 private int size;
103
104 /**
105 * The comparator, or null if priority queue uses elements'
106 * natural ordering.
107 */
108 private final Comparator<? super E> comparator;
109
110 /**
111 * The number of times this priority queue has been
112 * <i>structurally modified</i>. See AbstractList for gory details.
113 */
114 transient int modCount = 0; // non-private to simplify nested class access
115
116 /**
117 * Creates a {@code PriorityQueue} with the default initial
118 * capacity (11) that orders its elements according to their
119 * {@linkplain Comparable natural ordering}.
120 */
121 public PriorityQueue() {
122 this(DEFAULT_INITIAL_CAPACITY, null);
123 }
124
125 /**
126 * Creates a {@code PriorityQueue} with the specified initial
127 * capacity that orders its elements according to their
128 * {@linkplain Comparable natural ordering}.
129 *
130 * @param initialCapacity the initial capacity for this priority queue
131 * @throws IllegalArgumentException if {@code initialCapacity} is less
132 * than 1
133 */
134 public PriorityQueue(int initialCapacity) {
135 this(initialCapacity, null);
136 }
137
138 /**
139 * Creates a {@code PriorityQueue} with the specified initial capacity
140 * that orders its elements according to the specified comparator.
141 *
142 * @param initialCapacity the initial capacity for this priority queue
143 * @param comparator the comparator that will be used to order this
144 * priority queue. If {@code null}, the {@linkplain Comparable
145 * natural ordering} of the elements will be used.
146 * @throws IllegalArgumentException if {@code initialCapacity} is
147 * less than 1
148 */
149 public PriorityQueue(int initialCapacity,
150 Comparator<? super E> comparator) {
151 // Note: This restriction of at least one is not actually needed,
152 // but continues for 1.5 compatibility
153 if (initialCapacity < 1)
154 throw new IllegalArgumentException();
155 this.queue = new Object[initialCapacity];
156 this.comparator = comparator;
157 }
158
159 /**
160 * Creates a {@code PriorityQueue} containing the elements in the
161 * specified collection. If the specified collection is an instance of
162 * a {@link SortedSet} or is another {@code PriorityQueue}, this
163 * priority queue will be ordered according to the same ordering.
164 * Otherwise, this priority queue will be ordered according to the
165 * {@linkplain Comparable natural ordering} of its elements.
166 *
167 * @param c the collection whose elements are to be placed
168 * into this priority queue
169 * @throws ClassCastException if elements of the specified collection
170 * cannot be compared to one another according to the priority
171 * queue's ordering
172 * @throws NullPointerException if the specified collection or any
173 * of its elements are null
174 */
175 @SuppressWarnings("unchecked")
176 public PriorityQueue(Collection<? extends E> c) {
177 if (c instanceof SortedSet<?>) {
178 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
179 this.comparator = (Comparator<? super E>) ss.comparator();
180 initElementsFromCollection(ss);
181 }
182 else if (c instanceof PriorityQueue<?>) {
183 PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
184 this.comparator = (Comparator<? super E>) pq.comparator();
185 initFromPriorityQueue(pq);
186 }
187 else {
188 this.comparator = null;
189 initFromCollection(c);
190 }
191 }
192
193 /**
194 * Creates a {@code PriorityQueue} containing the elements in the
195 * specified priority queue. This priority queue will be
196 * ordered according to the same ordering as the given priority
197 * queue.
198 *
199 * @param c the priority queue whose elements are to be placed
200 * into this priority queue
201 * @throws ClassCastException if elements of {@code c} cannot be
202 * compared to one another according to {@code c}'s
203 * ordering
204 * @throws NullPointerException if the specified priority queue or any
205 * of its elements are null
206 */
207 @SuppressWarnings("unchecked")
208 public PriorityQueue(PriorityQueue<? extends E> c) {
209 this.comparator = (Comparator<? super E>) c.comparator();
210 initFromPriorityQueue(c);
211 }
212
213 /**
214 * Creates a {@code PriorityQueue} containing the elements in the
215 * specified sorted set. This priority queue will be ordered
216 * according to the same ordering as the given sorted set.
217 *
218 * @param c the sorted set whose elements are to be placed
219 * into this priority queue
220 * @throws ClassCastException if elements of the specified sorted
221 * set cannot be compared to one another according to the
222 * sorted set's ordering
223 * @throws NullPointerException if the specified sorted set or any
224 * of its elements are null
225 */
226 @SuppressWarnings("unchecked")
227 public PriorityQueue(SortedSet<? extends E> c) {
228 this.comparator = (Comparator<? super E>) c.comparator();
229 initElementsFromCollection(c);
230 }
231
232 private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
233 if (c.getClass() == PriorityQueue.class) {
234 this.queue = c.toArray();
235 this.size = c.size();
236 } else {
237 initFromCollection(c);
238 }
239 }
240
241 private void initElementsFromCollection(Collection<? extends E> c) {
242 Object[] a = c.toArray();
243 // If c.toArray incorrectly doesn't return Object[], copy it.
244 if (a.getClass() != Object[].class)
245 a = Arrays.copyOf(a, a.length, Object[].class);
246 int len = a.length;
247 if (len == 1 || this.comparator != null)
248 for (int i = 0; i < len; i++)
249 if (a[i] == null)
250 throw new NullPointerException();
251 this.queue = a;
252 this.size = a.length;
253 }
254
255 /**
256 * Initializes queue array with elements from the given Collection.
257 *
258 * @param c the collection
259 */
260 private void initFromCollection(Collection<? extends E> c) {
261 initElementsFromCollection(c);
262 heapify();
263 }
264
265 /**
266 * The maximum size of array to allocate.
267 * Some VMs reserve some header words in an array.
268 * Attempts to allocate larger arrays may result in
269 * OutOfMemoryError: Requested array size exceeds VM limit
270 */
271 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
272
273 /**
274 * Increases the capacity of the array.
275 *
276 * @param minCapacity the desired minimum capacity
277 */
278 private void grow(int minCapacity) {
279 int oldCapacity = queue.length;
280 // Double size if small; else grow by 50%
281 int newCapacity = oldCapacity + ((oldCapacity < 64) ?
282 (oldCapacity + 2) :
283 (oldCapacity >> 1));
284 // overflow-conscious code
285 if (newCapacity - MAX_ARRAY_SIZE > 0)
286 newCapacity = hugeCapacity(minCapacity);
287 queue = Arrays.copyOf(queue, newCapacity);
288 }
289
290 private static int hugeCapacity(int minCapacity) {
291 if (minCapacity < 0) // overflow
292 throw new OutOfMemoryError();
293 return (minCapacity > MAX_ARRAY_SIZE) ?
294 Integer.MAX_VALUE :
295 MAX_ARRAY_SIZE;
296 }
297
298 /**
299 * Inserts the specified element into this priority queue.
300 *
301 * @return {@code true} (as specified by {@link Collection#add})
302 * @throws ClassCastException if the specified element cannot be
303 * compared with elements currently in this priority queue
304 * according to the priority queue's ordering
305 * @throws NullPointerException if the specified element is null
306 */
307 public boolean add(E e) {
308 return offer(e);
309 }
310
311 /**
312 * Inserts the specified element into this priority queue.
313 *
314 * @return {@code true} (as specified by {@link Queue#offer})
315 * @throws ClassCastException if the specified element cannot be
316 * compared with elements currently in this priority queue
317 * according to the priority queue's ordering
318 * @throws NullPointerException if the specified element is null
319 */
320 public boolean offer(E e) {
321 if (e == null)
322 throw new NullPointerException();
323 modCount++;
324 int i = size;
325 if (i >= queue.length)
326 grow(i + 1);
327 size = i + 1;
328 if (i == 0)
329 queue[0] = e;
330 else
331 siftUp(i, e);
332 return true;
333 }
334
335 @SuppressWarnings("unchecked")
336 public E peek() {
337 return (size == 0) ? null : (E) queue[0];
338 }
339
340 private int indexOf(Object o) {
341 if (o != null) {
342 for (int i = 0; i < size; i++)
343 if (o.equals(queue[i]))
344 return i;
345 }
346 return -1;
347 }
348
349 /**
350 * Removes a single instance of the specified element from this queue,
351 * if it is present. More formally, removes an element {@code e} such
352 * that {@code o.equals(e)}, if this queue contains one or more such
353 * elements. Returns {@code true} if and only if this queue contained
354 * the specified element (or equivalently, if this queue changed as a
355 * result of the call).
356 *
357 * @param o element to be removed from this queue, if present
358 * @return {@code true} if this queue changed as a result of the call
359 */
360 public boolean remove(Object o) {
361 int i = indexOf(o);
362 if (i == -1)
363 return false;
364 else {
365 removeAt(i);
366 return true;
367 }
368 }
369
370 /**
371 * Version of remove using reference equality, not equals.
372 * Needed by iterator.remove.
373 *
374 * @param o element to be removed from this queue, if present
375 * @return {@code true} if removed
376 */
377 boolean removeEq(Object o) {
378 for (int i = 0; i < size; i++) {
379 if (o == queue[i]) {
380 removeAt(i);
381 return true;
382 }
383 }
384 return false;
385 }
386
387 /**
388 * Returns {@code true} if this queue contains the specified element.
389 * More formally, returns {@code true} if and only if this queue contains
390 * at least one element {@code e} such that {@code o.equals(e)}.
391 *
392 * @param o object to be checked for containment in this queue
393 * @return {@code true} if this queue contains the specified element
394 */
395 public boolean contains(Object o) {
396 return indexOf(o) >= 0;
397 }
398
399 /**
400 * Returns an array containing all of the elements in this queue.
401 * The elements are in no particular order.
402 *
403 * <p>The returned array will be "safe" in that no references to it are
404 * maintained by this queue. (In other words, this method must allocate
405 * a new array). The caller is thus free to modify the returned array.
406 *
407 * <p>This method acts as bridge between array-based and collection-based
408 * APIs.
409 *
410 * @return an array containing all of the elements in this queue
411 */
412 public Object[] toArray() {
413 return Arrays.copyOf(queue, size);
414 }
415
416 /**
417 * Returns an array containing all of the elements in this queue; the
418 * runtime type of the returned array is that of the specified array.
419 * The returned array elements are in no particular order.
420 * If the queue fits in the specified array, it is returned therein.
421 * Otherwise, a new array is allocated with the runtime type of the
422 * specified array and the size of this queue.
423 *
424 * <p>If the queue fits in the specified array with room to spare
425 * (i.e., the array has more elements than the queue), the element in
426 * the array immediately following the end of the collection is set to
427 * {@code null}.
428 *
429 * <p>Like the {@link #toArray()} method, this method acts as bridge between
430 * array-based and collection-based APIs. Further, this method allows
431 * precise control over the runtime type of the output array, and may,
432 * under certain circumstances, be used to save allocation costs.
433 *
434 * <p>Suppose {@code x} is a queue known to contain only strings.
435 * The following code can be used to dump the queue into a newly
436 * allocated array of {@code String}:
437 *
438 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
439 *
440 * Note that {@code toArray(new Object[0])} is identical in function to
441 * {@code toArray()}.
442 *
443 * @param a the array into which the elements of the queue are to
444 * be stored, if it is big enough; otherwise, a new array of the
445 * same runtime type is allocated for this purpose.
446 * @return an array containing all of the elements in this queue
447 * @throws ArrayStoreException if the runtime type of the specified array
448 * is not a supertype of the runtime type of every element in
449 * this queue
450 * @throws NullPointerException if the specified array is null
451 */
452 @SuppressWarnings("unchecked")
453 public <T> T[] toArray(T[] a) {
454 final int size = this.size;
455 if (a.length < size)
456 // Make a new array of a's runtime type, but my contents:
457 return (T[]) Arrays.copyOf(queue, size, a.getClass());
458 System.arraycopy(queue, 0, a, 0, size);
459 if (a.length > size)
460 a[size] = null;
461 return a;
462 }
463
464 /**
465 * Returns an iterator over the elements in this queue. The iterator
466 * does not return the elements in any particular order.
467 *
468 * @return an iterator over the elements in this queue
469 */
470 public Iterator<E> iterator() {
471 return new Itr();
472 }
473
474 private final class Itr implements Iterator<E> {
475 /**
476 * Index (into queue array) of element to be returned by
477 * subsequent call to next.
478 */
479 private int cursor;
480
481 /**
482 * Index of element returned by most recent call to next,
483 * unless that element came from the forgetMeNot list.
484 * Set to -1 if element is deleted by a call to remove.
485 */
486 private int lastRet = -1;
487
488 /**
489 * A queue of elements that were moved from the unvisited portion of
490 * the heap into the visited portion as a result of "unlucky" element
491 * removals during the iteration. (Unlucky element removals are those
492 * that require a siftup instead of a siftdown.) We must visit all of
493 * the elements in this list to complete the iteration. We do this
494 * after we've completed the "normal" iteration.
495 *
496 * We expect that most iterations, even those involving removals,
497 * will not need to store elements in this field.
498 */
499 private ArrayDeque<E> forgetMeNot;
500
501 /**
502 * Element returned by the most recent call to next iff that
503 * element was drawn from the forgetMeNot list.
504 */
505 private E lastRetElt;
506
507 /**
508 * The modCount value that the iterator believes that the backing
509 * Queue should have. If this expectation is violated, the iterator
510 * has detected concurrent modification.
511 */
512 private int expectedModCount = modCount;
513
514 public boolean hasNext() {
515 return cursor < size ||
516 (forgetMeNot != null && !forgetMeNot.isEmpty());
517 }
518
519 @SuppressWarnings("unchecked")
520 public E next() {
521 if (expectedModCount != modCount)
522 throw new ConcurrentModificationException();
523 if (cursor < size)
524 return (E) queue[lastRet = cursor++];
525 if (forgetMeNot != null) {
526 lastRet = -1;
527 lastRetElt = forgetMeNot.poll();
528 if (lastRetElt != null)
529 return lastRetElt;
530 }
531 throw new NoSuchElementException();
532 }
533
534 public void remove() {
535 if (expectedModCount != modCount)
536 throw new ConcurrentModificationException();
537 if (lastRet != -1) {
538 E moved = PriorityQueue.this.removeAt(lastRet);
539 lastRet = -1;
540 if (moved == null)
541 cursor--;
542 else {
543 if (forgetMeNot == null)
544 forgetMeNot = new ArrayDeque<>();
545 forgetMeNot.add(moved);
546 }
547 } else if (lastRetElt != null) {
548 PriorityQueue.this.removeEq(lastRetElt);
549 lastRetElt = null;
550 } else {
551 throw new IllegalStateException();
552 }
553 expectedModCount = modCount;
554 }
555 }
556
557 public int size() {
558 return size;
559 }
560
561 /**
562 * Removes all of the elements from this priority queue.
563 * The queue will be empty after this call returns.
564 */
565 public void clear() {
566 modCount++;
567 for (int i = 0; i < size; i++)
568 queue[i] = null;
569 size = 0;
570 }
571
572 @SuppressWarnings("unchecked")
573 public E poll() {
574 if (size == 0)
575 return null;
576 int s = --size;
577 modCount++;
578 E result = (E) queue[0];
579 E x = (E) queue[s];
580 queue[s] = null;
581 if (s != 0)
582 siftDown(0, x);
583 return result;
584 }
585
586 /**
587 * Removes the ith element from queue.
588 *
589 * Normally this method leaves the elements at up to i-1,
590 * inclusive, untouched. Under these circumstances, it returns
591 * null. Occasionally, in order to maintain the heap invariant,
592 * it must swap a later element of the list with one earlier than
593 * i. Under these circumstances, this method returns the element
594 * that was previously at the end of the list and is now at some
595 * position before i. This fact is used by iterator.remove so as to
596 * avoid missing traversing elements.
597 */
598 @SuppressWarnings("unchecked")
599 private E removeAt(int i) {
600 // assert i >= 0 && i < size;
601 modCount++;
602 int s = --size;
603 if (s == i) // removed last element
604 queue[i] = null;
605 else {
606 E moved = (E) queue[s];
607 queue[s] = null;
608 siftDown(i, moved);
609 if (queue[i] == moved) {
610 siftUp(i, moved);
611 if (queue[i] != moved)
612 return moved;
613 }
614 }
615 return null;
616 }
617
618 /**
619 * Inserts item x at position k, maintaining heap invariant by
620 * promoting x up the tree until it is greater than or equal to
621 * its parent, or is the root.
622 *
623 * To simplify and speed up coercions and comparisons. the
624 * Comparable and Comparator versions are separated into different
625 * methods that are otherwise identical. (Similarly for siftDown.)
626 *
627 * @param k the position to fill
628 * @param x the item to insert
629 */
630 private void siftUp(int k, E x) {
631 if (comparator != null)
632 siftUpUsingComparator(k, x);
633 else
634 siftUpComparable(k, x);
635 }
636
637 @SuppressWarnings("unchecked")
638 private void siftUpComparable(int k, E x) {
639 Comparable<? super E> key = (Comparable<? super E>) x;
640 while (k > 0) {
641 int parent = (k - 1) >>> 1;
642 Object e = queue[parent];
643 if (key.compareTo((E) e) >= 0)
644 break;
645 queue[k] = e;
646 k = parent;
647 }
648 queue[k] = key;
649 }
650
651 @SuppressWarnings("unchecked")
652 private void siftUpUsingComparator(int k, E x) {
653 while (k > 0) {
654 int parent = (k - 1) >>> 1;
655 Object e = queue[parent];
656 if (comparator.compare(x, (E) e) >= 0)
657 break;
658 queue[k] = e;
659 k = parent;
660 }
661 queue[k] = x;
662 }
663
664 /**
665 * Inserts item x at position k, maintaining heap invariant by
666 * demoting x down the tree repeatedly until it is less than or
667 * equal to its children or is a leaf.
668 *
669 * @param k the position to fill
670 * @param x the item to insert
671 */
672 private void siftDown(int k, E x) {
673 if (comparator != null)
674 siftDownUsingComparator(k, x);
675 else
676 siftDownComparable(k, x);
677 }
678
679 @SuppressWarnings("unchecked")
680 private void siftDownComparable(int k, E x) {
681 Comparable<? super E> key = (Comparable<? super E>)x;
682 int half = size >>> 1; // loop while a non-leaf
683 while (k < half) {
684 int child = (k << 1) + 1; // assume left child is least
685 Object c = queue[child];
686 int right = child + 1;
687 if (right < size &&
688 ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
689 c = queue[child = right];
690 if (key.compareTo((E) c) <= 0)
691 break;
692 queue[k] = c;
693 k = child;
694 }
695 queue[k] = key;
696 }
697
698 @SuppressWarnings("unchecked")
699 private void siftDownUsingComparator(int k, E x) {
700 int half = size >>> 1;
701 while (k < half) {
702 int child = (k << 1) + 1;
703 Object c = queue[child];
704 int right = child + 1;
705 if (right < size &&
706 comparator.compare((E) c, (E) queue[right]) > 0)
707 c = queue[child = right];
708 if (comparator.compare(x, (E) c) <= 0)
709 break;
710 queue[k] = c;
711 k = child;
712 }
713 queue[k] = x;
714 }
715
716 /**
717 * Establishes the heap invariant (described above) in the entire tree,
718 * assuming nothing about the order of the elements prior to the call.
719 */
720 @SuppressWarnings("unchecked")
721 private void heapify() {
722 for (int i = (size >>> 1) - 1; i >= 0; i--)
723 siftDown(i, (E) queue[i]);
724 }
725
726 /**
727 * Returns the comparator used to order the elements in this
728 * queue, or {@code null} if this queue is sorted according to
729 * the {@linkplain Comparable natural ordering} of its elements.
730 *
731 * @return the comparator used to order this queue, or
732 * {@code null} if this queue is sorted according to the
733 * natural ordering of its elements
734 */
735 public Comparator<? super E> comparator() {
736 return comparator;
737 }
738
739 /**
740 * Saves this queue to a stream (that is, serializes it).
741 *
742 * @serialData The length of the array backing the instance is
743 * emitted (int), followed by all of its elements
744 * (each an {@code Object}) in the proper order.
745 * @param s the stream
746 * @throws java.io.IOException if an I/O error occurs
747 */
748 private void writeObject(java.io.ObjectOutputStream s)
749 throws java.io.IOException {
750 // Write out element count, and any hidden stuff
751 s.defaultWriteObject();
752
753 // Write out array length, for compatibility with 1.5 version
754 s.writeInt(Math.max(2, size + 1));
755
756 // Write out all elements in the "proper order".
757 for (int i = 0; i < size; i++)
758 s.writeObject(queue[i]);
759 }
760
761 /**
762 * Reconstitutes the {@code PriorityQueue} instance from a stream
763 * (that is, deserializes it).
764 *
765 * @param s the stream
766 * @throws ClassNotFoundException if the class of a serialized object
767 * could not be found
768 * @throws java.io.IOException if an I/O error occurs
769 */
770 private void readObject(java.io.ObjectInputStream s)
771 throws java.io.IOException, ClassNotFoundException {
772 // Read in size, and any hidden stuff
773 s.defaultReadObject();
774
775 // Read in (and discard) array length
776 s.readInt();
777
778 queue = new Object[size];
779
780 // Read in all elements.
781 for (int i = 0; i < size; i++)
782 queue[i] = s.readObject();
783
784 // Elements are guaranteed to be in "proper order", but the
785 // spec has never explained what that might be.
786 heapify();
787 }
788
789 public Spliterator<E> spliterator() {
790 return new PriorityQueueSpliterator<E>(this, 0, -1, 0);
791 }
792
793 /**
794 * This is very similar to ArrayList Spliterator, except for extra
795 * null checks.
796 */
797 static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
798 private final PriorityQueue<E> pq;
799 private int index; // current index, modified on advance/split
800 private int fence; // -1 until first use
801 private int expectedModCount; // initialized when fence set
802
803 /** Creates new spliterator covering the given range */
804 PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
805 int expectedModCount) {
806 this.pq = pq;
807 this.index = origin;
808 this.fence = fence;
809 this.expectedModCount = expectedModCount;
810 }
811
812 private int getFence() { // initialize fence to size on first use
813 int hi;
814 if ((hi = fence) < 0) {
815 expectedModCount = pq.modCount;
816 hi = fence = pq.size;
817 }
818 return hi;
819 }
820
821 public Spliterator<E> trySplit() {
822 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
823 return (lo >= mid) ? null :
824 new PriorityQueueSpliterator<E>(pq, lo, index = mid,
825 expectedModCount);
826 }
827
828 @SuppressWarnings("unchecked")
829 public void forEachRemaining(Consumer<? super E> action) {
830 int i, hi, mc; // hoist accesses and checks from loop
831 PriorityQueue<E> q; Object[] a;
832 if (action == null)
833 throw new NullPointerException();
834 if ((q = pq) != null && (a = q.queue) != null) {
835 if ((hi = fence) < 0) {
836 mc = q.modCount;
837 hi = q.size;
838 }
839 else
840 mc = expectedModCount;
841 if ((i = index) >= 0 && (index = hi) <= a.length) {
842 for (E e;; ++i) {
843 if (i < hi) {
844 if ((e = (E) a[i]) == null) // must be CME
845 break;
846 action.accept(e);
847 }
848 else if (q.modCount != mc)
849 break;
850 else
851 return;
852 }
853 }
854 }
855 throw new ConcurrentModificationException();
856 }
857
858 public boolean tryAdvance(Consumer<? super E> action) {
859 int hi = getFence(), lo = index;
860 if (lo >= 0 && lo < hi) {
861 index = lo + 1;
862 @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
863 if (e == null)
864 throw new ConcurrentModificationException();
865 action.accept(e);
866 if (pq.modCount != expectedModCount)
867 throw new ConcurrentModificationException();
868 return true;
869 }
870 return false;
871 }
872
873 public long estimateSize() {
874 return (long) (getFence() - index);
875 }
876
877 public int characteristics() {
878 return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
879 }
880 }
881 }