ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.3
Committed: Sun May 18 20:36:01 2003 UTC (20 years, 11 months ago) by tim
Branch: MAIN
Changes since 1.2: +1 -1 lines
Log Message:
Added another type parameter

File Contents

# Content
1 package java.util;
2
3 /*
4 * Todo
5 *
6 * 1) Make it serializable.
7 */
8
9 /**
10 * An unbounded priority queue based on a priority heap. This queue orders
11 * elements according to the order specified at creation time. This order is
12 * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
13 * either according to their <i>natural order</i> (see {@link Comparable}), or
14 * according to a {@link Comparator}, depending on which constructor is used.
15 * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
16 * minimal element with respect to the specified ordering. If multiple
17 * these elements are tied for least value, no guarantees are made as to
18 * which of elements is returned.
19 *
20 * <p>Each priority queue has a <i>capacity</i>. The capacity is the size of
21 * the array used to store the elements on the queue. It is always at least
22 * as large as the queue size. As elements are added to a priority list,
23 * its capacity grows automatically. The details of the growth policy are not
24 * specified.
25 *
26 *<p>Implementation note: this implementation provides O(log(n)) time for
27 * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
28 * methods; linear time for the <tt>remove(Object)</tt> and
29 * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
30 * <tt>element</tt>, and <tt>size</tt> methods.
31 *
32 * <p>This class is a member of the
33 * <a href="{@docRoot}/../guide/collections/index.html">
34 * Java Collections Framework</a>.
35 */
36 public class PriorityQueue<E> extends AbstractQueue<E>
37 implements Queue<E>
38 {
39 private static final int DEFAULT_INITIAL_CAPACITY = 11;
40
41 /**
42 * Priority queue represented as a balanced binary heap: the two children
43 * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
44 * ordered by comparator, or by the elements' natural ordering, if
45 * comparator is null: For each node n in the heap, and each descendant
46 * of n, d, n <= d.
47 *
48 * The element with the lowest value is in queue[1] (assuming the queue is
49 * nonempty). A one-based array is used in preference to the traditional
50 * zero-based array to simplify parent and child calculations.
51 *
52 * queue.length must be >= 2, even if size == 0.
53 */
54 private E[] queue;
55
56 /**
57 * The number of elements in the priority queue.
58 */
59 private int size = 0;
60
61 /**
62 * The comparator, or null if priority queue uses elements'
63 * natural ordering.
64 */
65 private final Comparator<E> comparator;
66
67 /**
68 * The number of times this priority queue has been
69 * <i>structurally modified</i>. See AbstractList for gory details.
70 */
71 private int modCount = 0;
72
73 /**
74 * Create a new priority queue with the default initial capacity (11)
75 * that orders its elements according to their natural ordering.
76 */
77 public PriorityQueue() {
78 this(DEFAULT_INITIAL_CAPACITY);
79 }
80
81 /**
82 * Create a new priority queue with the specified initial capacity
83 * that orders its elements according to their natural ordering.
84 *
85 * @param initialCapacity the initial capacity for this priority queue.
86 */
87 public PriorityQueue(int initialCapacity) {
88 this(initialCapacity, null);
89 }
90
91 /**
92 * Create a new priority queue with the specified initial capacity (11)
93 * that orders its elements according to the specified comparator.
94 *
95 * @param initialCapacity the initial capacity for this priority queue.
96 * @param comparator the comparator used to order this priority queue.
97 */
98 public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
99 if (initialCapacity < 1)
100 initialCapacity = 1;
101 queue = new E[initialCapacity + 1];
102 this.comparator = comparator;
103 }
104
105 /**
106 * Create a new priority queue containing the elements in the specified
107 * collection. The priority queue has an initial capacity of 110% of the
108 * size of the specified collection. If the specified collection
109 * implements the {@link Sorted} interface, the priority queue will be
110 * sorted according to the same comparator, or according to its elements'
111 * natural order if the collection is sorted according to its elements'
112 * natural order. If the specified collection does not implement the
113 * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 * its elements' natural order.
115 *
116 * @param initialElements the collection whose elements are to be placed
117 * into this priority queue.
118 * @throws ClassCastException if elements of the specified collection
119 * cannot be compared to one another according to the priority
120 * queue's ordering.
121 * @throws NullPointerException if the specified collection or an
122 * element of the specified collection is <tt>null</tt>.
123 */
124 public PriorityQueue(Collection<E> initialElements) {
125 int sz = initialElements.size();
126 int initialCapacity = (int)Math.min((sz * 110L) / 100,
127 Integer.MAX_VALUE - 1);
128 if (initialCapacity < 1)
129 initialCapacity = 1;
130 queue = new E[initialCapacity + 1];
131
132 /* Commented out to compile with generics compiler
133
134 if (initialElements instanceof Sorted) {
135 comparator = ((Sorted)initialElements).comparator();
136 for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137 queue[++size] = i.next();
138 } else {
139 */
140 {
141 comparator = null;
142 for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
143 add(i.next());
144 }
145 }
146
147 // Queue Methods
148
149 /**
150 * Remove and return the minimal element from this priority queue if
151 * it contains one or more elements, otherwise <tt>null</tt>. The term
152 * <i>minimal</i> is defined according to this priority queue's order.
153 *
154 * @return the minimal element from this priority queue if it contains
155 * one or more elements, otherwise <tt>null</tt>.
156 */
157 public E poll() {
158 if (size == 0)
159 return null;
160 return remove(1);
161 }
162
163 /**
164 * Return, but do not remove, the minimal element from the priority queue,
165 * or <tt>null</tt> if the queue is empty. The term <i>minimal</i> is
166 * defined according to this priority queue's order. This method returns
167 * the same object reference that would be returned by by the
168 * <tt>poll</tt> method. The two methods differ in that this method
169 * does not remove the element from the priority queue.
170 *
171 * @return the minimal element from this priority queue if it contains
172 * one or more elements, otherwise <tt>null</tt>.
173 */
174 public E peek() {
175 return queue[1];
176 }
177
178 // Collection Methods
179
180 /**
181 * Removes a single instance of the specified element from this priority
182 * queue, if it is present. Returns true if this collection contained the
183 * specified element (or equivalently, if this collection changed as a
184 * result of the call).
185 *
186 * @param o element to be removed from this collection, if present.
187 * @return <tt>true</tt> if this collection changed as a result of the
188 * call
189 * @throws ClassCastException if the specified element cannot be compared
190 * with elements currently in the priority queue according
191 * to the priority queue's ordering.
192 * @throws NullPointerException if the specified element is null.
193 */
194 public boolean remove(Object element) {
195 if (element == null)
196 throw new NullPointerException();
197
198 if (comparator == null) {
199 for (int i = 1; i <= size; i++) {
200 if (((Comparable)queue[i]).compareTo(element) == 0) {
201 remove(i);
202 return true;
203 }
204 }
205 } else {
206 for (int i = 1; i <= size; i++) {
207 if (comparator.compare(queue[i], (E) element) == 0) {
208 remove(i);
209 return true;
210 }
211 }
212 }
213 return false;
214 }
215
216 /**
217 * Returns an iterator over the elements in this priority queue. The
218 * first element returned by this iterator is the same element that
219 * would be returned by a call to <tt>peek</tt>.
220 *
221 * @return an <tt>Iterator</tt> over the elements in this priority queue.
222 */
223 public Iterator<E> iterator() {
224 return new Itr();
225 }
226
227 private class Itr implements Iterator<E> {
228 /**
229 * Index (into queue array) of element to be returned by
230 * subsequent call to next.
231 */
232 int cursor = 1;
233
234 /**
235 * Index of element returned by most recent call to next or
236 * previous. Reset to 0 if this element is deleted by a call
237 * to remove.
238 */
239 int lastRet = 0;
240
241 /**
242 * The modCount value that the iterator believes that the backing
243 * List should have. If this expectation is violated, the iterator
244 * has detected concurrent modification.
245 */
246 int expectedModCount = modCount;
247
248 public boolean hasNext() {
249 return cursor <= size;
250 }
251
252 public E next() {
253 checkForComodification();
254 if (cursor > size)
255 throw new NoSuchElementException();
256 E result = queue[cursor];
257 lastRet = cursor++;
258 return result;
259 }
260
261 public void remove() {
262 if (lastRet == 0)
263 throw new IllegalStateException();
264 checkForComodification();
265
266 PriorityQueue.this.remove(lastRet);
267 if (lastRet < cursor)
268 cursor--;
269 lastRet = 0;
270 expectedModCount = modCount;
271 }
272
273 final void checkForComodification() {
274 if (modCount != expectedModCount)
275 throw new ConcurrentModificationException();
276 }
277 }
278
279 /**
280 * Returns the number of elements in this priority queue.
281 *
282 * @return the number of elements in this priority queue.
283 */
284 public int size() {
285 return size;
286 }
287
288 /**
289 * Add the specified element to this priority queue.
290 *
291 * @param element the element to add.
292 * @return true
293 * @throws ClassCastException if the specified element cannot be compared
294 * with elements currently in the priority queue according
295 * to the priority queue's ordering.
296 * @throws NullPointerException if the specified element is null.
297 */
298 public boolean offer(E element) {
299 if (element == null)
300 throw new NullPointerException();
301 modCount++;
302
303 // Grow backing store if necessary
304 if (++size == queue.length) {
305 E[] newQueue = new E[2 * queue.length];
306 System.arraycopy(queue, 0, newQueue, 0, size);
307 queue = newQueue;
308 }
309
310 queue[size] = element;
311 fixUp(size);
312 return true;
313 }
314
315 /**
316 * Remove all elements from the priority queue.
317 */
318 public void clear() {
319 modCount++;
320
321 // Null out element references to prevent memory leak
322 for (int i=1; i<=size; i++)
323 queue[i] = null;
324
325 size = 0;
326 }
327
328 /**
329 * Removes and returns the ith element from queue. Recall
330 * that queue is one-based, so 1 <= i <= size.
331 *
332 * XXX: Could further special-case i==size, but is it worth it?
333 * XXX: Could special-case i==0, but is it worth it?
334 */
335 private E remove(int i) {
336 assert i <= size;
337 modCount++;
338
339 E result = queue[i];
340 queue[i] = queue[size];
341 queue[size--] = null; // Drop extra ref to prevent memory leak
342 if (i <= size)
343 fixDown(i);
344 return result;
345 }
346
347 /**
348 * Establishes the heap invariant (described above) assuming the heap
349 * satisfies the invariant except possibly for the leaf-node indexed by k
350 * (which may have a nextExecutionTime less than its parent's).
351 *
352 * This method functions by "promoting" queue[k] up the hierarchy
353 * (by swapping it with its parent) repeatedly until queue[k]
354 * is greater than or equal to its parent.
355 */
356 private void fixUp(int k) {
357 if (comparator == null) {
358 while (k > 1) {
359 int j = k >> 1;
360 if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
361 break;
362 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
363 k = j;
364 }
365 } else {
366 while (k > 1) {
367 int j = k >> 1;
368 if (comparator.compare(queue[j], queue[k]) <= 0)
369 break;
370 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
371 k = j;
372 }
373 }
374 }
375
376 /**
377 * Establishes the heap invariant (described above) in the subtree
378 * rooted at k, which is assumed to satisfy the heap invariant except
379 * possibly for node k itself (which may be greater than its children).
380 *
381 * This method functions by "demoting" queue[k] down the hierarchy
382 * (by swapping it with its smaller child) repeatedly until queue[k]
383 * is less than or equal to its children.
384 */
385 private void fixDown(int k) {
386 int j;
387 if (comparator == null) {
388 while ((j = k << 1) <= size) {
389 if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
390 j++; // j indexes smallest kid
391 if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
392 break;
393 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
394 k = j;
395 }
396 } else {
397 while ((j = k << 1) <= size) {
398 if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
399 j++; // j indexes smallest kid
400 if (comparator.compare(queue[k], queue[j]) <= 0)
401 break;
402 E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
403 k = j;
404 }
405 }
406 }
407
408 /**
409 * Returns the comparator associated with this priority queue, or
410 * <tt>null</tt> if it uses its elements' natural ordering.
411 *
412 * @return the comparator associated with this priority queue, or
413 * <tt>null</tt> if it uses its elements' natural ordering.
414 */
415 Comparator<E> comparator() {
416 return comparator;
417 }
418 }