ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.10
Committed: Sun Jul 14 08:06:49 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.9: +14 -14 lines
Log Message:
javadoc punctuation

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.util.concurrent.atomic.AtomicLong;
29     import java.util.Spliterator;
30     import java.util.function.IntConsumer;
31     import java.util.function.LongConsumer;
32     import java.util.function.DoubleConsumer;
33     import java.util.stream.StreamSupport;
34     import java.util.stream.IntStream;
35     import java.util.stream.LongStream;
36     import java.util.stream.DoubleStream;
37    
38     /**
39     * A generator of uniform pseudorandom values applicable for use in
40     * (among other contexts) isolated parallel computations that may
41     * generate subtasks. Class SplittableRandom supports methods for
42 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
43 dl 1.1 * and {@code double} with similar usages as for class
44 jsr166 1.9 * {@link java.util.Random} but differs in the following ways:
45     *
46     * <ul>
47 dl 1.1 *
48     * <li>Series of generated values pass the DieHarder suite testing
49     * independence and uniformity properties of random number generators.
50     * (Most recently validated with <a
51     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
52     * 3.31.1</a>.) These tests validate only the methods for certain
53     * types and ranges, but similar properties are expected to hold, at
54     * least approximately, for others as well. </li>
55     *
56     * <li> Method {@link #split} constructs and returns a new
57     * SplittableRandom instance that shares no mutable state with the
58 dl 1.7 * current instance. However, with very high probability, the
59     * values collectively generated by the two objects have the same
60 dl 1.1 * statistical properties as if the same quantity of values were
61     * generated by a single thread using a single {@code
62     * SplittableRandom} object. </li>
63     *
64     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
65     * They are designed to be split, not shared, across threads. For
66     * example, a {@link java.util.concurrent.ForkJoinTask
67     * fork/join-style} computation using random numbers might include a
68     * construction of the form {@code new
69     * Subtask(aSplittableRandom.split()).fork()}.
70     *
71     * <li>This class provides additional methods for generating random
72     * streams, that employ the above techniques when used in {@code
73     * stream.parallel()} mode.</li>
74     *
75     * </ul>
76     *
77     * @author Guy Steele
78 dl 1.2 * @author Doug Lea
79 dl 1.1 * @since 1.8
80     */
81     public class SplittableRandom {
82    
83     /*
84     * File organization: First the non-public methods that constitute
85     * the main algorithm, then the main public methods, followed by
86     * some custom spliterator classes needed for stream methods.
87     *
88     * Credits: Primary algorithm and code by Guy Steele. Stream
89     * support methods by Doug Lea. Documentation jointly produced
90     * with additional help from Brian Goetz.
91     */
92    
93     /*
94     * Implementation Overview.
95     *
96     * This algorithm was inspired by the "DotMix" algorithm by
97     * Leiserson, Schardl, and Sukha "Deterministic Parallel
98     * Random-Number Generation for Dynamic-Multithreading Platforms",
99     * PPoPP 2012, but improves and extends it in several ways.
100     *
101 dl 1.7 * The primary update step (see method nextSeed()) is simply to
102     * add a constant ("gamma") to the current seed, modulo a prime
103     * ("George"). However, the nextLong and nextInt methods do not
104     * return this value, but instead the results of bit-mixing
105     * transformations that produce more uniformly distributed
106     * sequences.
107 dl 1.1 *
108     * "George" is the otherwise nameless (because it cannot be
109     * represented) prime number 2^64+13. Using a prime number larger
110     * than can fit in a long ensures that all possible long values
111     * can occur, plus 13 others that just get skipped over when they
112     * are encountered; see method addGammaModGeorge. For this to
113     * work, initial gamma values must be at least 13.
114     *
115     * The value of gamma differs for each instance across a series of
116     * splits, and is generated using a slightly stripped-down variant
117     * of the same algorithm, but operating across calls to split(),
118 dl 1.2 * not calls to nextSeed(): Each instance carries the state of
119 dl 1.1 * this generator as nextSplit, and uses mix64(nextSplit) as its
120     * own gamma value. Computations of gammas themselves use a fixed
121     * constant as the second argument to the addGammaModGeorge
122     * function, GAMMA_GAMMA, a "genuinely random" number from a
123     * radioactive decay reading (obtained from
124     * http://www.fourmilab.ch/hotbits/) meeting the above range
125     * constraint. Using a fixed constant maintains the invariant that
126     * the value of gamma is the same for every instance that is at
127     * the same split-distance from their common root. (Note: there is
128     * nothing especially magic about obtaining this constant from a
129     * "truly random" physical source rather than just choosing one
130     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
131     * choice. In either case, good statistical behavior of the
132     * algorithm should be, and was, verified by using the DieHarder
133     * test suite.)
134     *
135     * The mix64 bit-mixing function called by nextLong and other
136     * methods computes the same value as the "64-bit finalizer"
137     * function in Austin Appleby's MurmurHash3 algorithm. See
138     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
139     * comments: "The constants for the finalizers were generated by a
140     * simple simulated-annealing algorithm, and both avalanche all
141     * bits of 'h' to within 0.25% bias." It also appears to work to
142     * use instead any of the variants proposed by David Stafford at
143     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
144     * but these variants have not yet been tested as thoroughly
145     * in the context of the implementation of SplittableRandom.
146     *
147     * The mix32 function used for nextInt just consists of two of the
148     * five lines of mix64; avalanche testing shows that the 64-bit result
149     * has its top 32 bits avalanched well, though not the bottom 32 bits.
150     * DieHarder tests show that it is adequate for generating one
151     * random int from the 64-bit result of nextSeed.
152     *
153     * Support for the default (no-argument) constructor relies on an
154     * AtomicLong (defaultSeedGenerator) to help perform the
155     * equivalent of a split of a statically constructed
156     * SplittableRandom. Unlike other cases, this split must be
157     * performed in a thread-safe manner. We use
158     * AtomicLong.compareAndSet as the (typically) most efficient
159     * mechanism. To bootstrap, we start off using System.nanotime(),
160     * and update using another "genuinely random" constant
161     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
162     * not 0, for its splitSeed argument (addGammaModGeorge(0,
163     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
164     * this root generator, even though the root is not explicitly
165     * represented as a SplittableRandom.
166     */
167    
168     /**
169     * The "genuinely random" value for producing new gamma values.
170     * The value is arbitrary, subject to the requirement that it be
171     * greater or equal to 13.
172     */
173     private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
174    
175     /**
176     * The "genuinely random" seed update value for default constructors.
177     * The value is arbitrary, subject to the requirement that it be
178     * greater or equal to 13.
179     */
180     private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
181    
182     /**
183 dl 1.5 * The least non-zero value returned by nextDouble(). This value
184 dl 1.7 * is scaled by a random value of 53 bits to produce a result.
185 dl 1.5 */
186     private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
187    
188     /**
189 dl 1.1 * The next seed for default constructors.
190     */
191     private static final AtomicLong defaultSeedGenerator =
192     new AtomicLong(System.nanoTime());
193    
194     /**
195     * The seed, updated only via method nextSeed.
196     */
197     private long seed;
198    
199     /**
200     * The constant value added to seed (mod George) on each update.
201     */
202     private final long gamma;
203    
204     /**
205     * The next seed to use for splits. Propagated using
206     * addGammaModGeorge across instances.
207     */
208     private final long nextSplit;
209    
210     /**
211     * Adds the given gamma value, g, to the given seed value s, mod
212     * George (2^64+13). We regard s and g as unsigned values
213     * (ranging from 0 to 2^64-1). We add g to s either once or twice
214     * (mod George) as necessary to produce an (unsigned) result less
215     * than 2^64. We require that g must be at least 13. This
216     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
217     * George < 2^64; thus we need only a conditional, not a loop,
218     * to be sure of getting a representable value.
219     *
220     * @param s a seed value
221     * @param g a gamma value, 13 <= g (as unsigned)
222     */
223     private static long addGammaModGeorge(long s, long g) {
224     long p = s + g;
225     if (Long.compareUnsigned(p, g) >= 0)
226     return p;
227     long q = p - 13L;
228     return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
229     }
230    
231     /**
232     * Returns a bit-mixed transformation of its argument.
233     * See above for explanation.
234     */
235     private static long mix64(long z) {
236     z ^= (z >>> 33);
237     z *= 0xff51afd7ed558ccdL;
238     z ^= (z >>> 33);
239     z *= 0xc4ceb9fe1a85ec53L;
240     z ^= (z >>> 33);
241     return z;
242     }
243    
244     /**
245     * Returns a bit-mixed int transformation of its argument.
246     * See above for explanation.
247     */
248     private static int mix32(long z) {
249     z ^= (z >>> 33);
250     z *= 0xc4ceb9fe1a85ec53L;
251     return (int)(z >>> 32);
252     }
253    
254     /**
255 dl 1.7 * Internal constructor used by all other constructors and by
256     * method split. Establishes the initial seed for this instance,
257     * and uses the given splitSeed to establish gamma, as well as the
258     * nextSplit to use by this instance. The loop to skip ineligible
259     * gammas very rarely iterates, and does so at most 13 times.
260     */
261     private SplittableRandom(long seed, long splitSeed) {
262     this.seed = seed;
263     long s = splitSeed, g;
264     do { // ensure gamma >= 13, considered as an unsigned integer
265     s = addGammaModGeorge(s, GAMMA_GAMMA);
266     g = mix64(s);
267     } while (Long.compareUnsigned(g, 13L) < 0);
268     this.gamma = g;
269     this.nextSplit = s;
270     }
271    
272     /**
273     * Updates in-place and returns seed.
274     * See above for explanation.
275     */
276     private long nextSeed() {
277     return seed = addGammaModGeorge(seed, gamma);
278     }
279    
280     /**
281     * Atomically updates and returns next seed for default constructor.
282 dl 1.1 */
283     private static long nextDefaultSeed() {
284     long oldSeed, newSeed;
285     do {
286     oldSeed = defaultSeedGenerator.get();
287     newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
288     } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
289     return mix64(newSeed);
290     }
291    
292     /*
293     * Internal versions of nextX methods used by streams, as well as
294     * the public nextX(origin, bound) methods. These exist mainly to
295     * avoid the need for multiple versions of stream spliterators
296     * across the different exported forms of streams.
297     */
298    
299     /**
300     * The form of nextLong used by LongStream Spliterators. If
301     * origin is greater than bound, acts as unbounded form of
302     * nextLong, else as bounded form.
303     *
304     * @param origin the least value, unless greater than bound
305     * @param bound the upper bound (exclusive), must not equal origin
306     * @return a pseudorandom value
307     */
308     final long internalNextLong(long origin, long bound) {
309     /*
310     * Four Cases:
311     *
312     * 1. If the arguments indicate unbounded form, act as
313     * nextLong().
314     *
315     * 2. If the range is an exact power of two, apply the
316     * associated bit mask.
317     *
318     * 3. If the range is positive, loop to avoid potential bias
319     * when the implicit nextLong() bound (2<sup>64</sup>) is not
320     * evenly divisible by the range. The loop rejects candidates
321     * computed from otherwise over-represented values. The
322     * expected number of iterations under an ideal generator
323 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
324     * takes an unlovable form. Because the first candidate is
325     * already available, we need a break-in-the-middle
326     * construction, which is concisely but cryptically performed
327     * within the while-condition of a body-less for loop.
328 dl 1.1 *
329     * 4. Otherwise, the range cannot be represented as a positive
330 dl 1.4 * long. The loop repeatedly generates unbounded longs until
331     * obtaining a candidate meeting constraints (with an expected
332     * number of iterations of less than two).
333 dl 1.1 */
334    
335     long r = mix64(nextSeed());
336     if (origin < bound) {
337     long n = bound - origin, m = n - 1;
338 dl 1.7 if ((n & m) == 0L) // power of two
339 dl 1.1 r = (r & m) + origin;
340 dl 1.7 else if (n > 0L) { // reject over-represented candidates
341 dl 1.1 for (long u = r >>> 1; // ensure nonnegative
342 dl 1.7 u + m - (r = u % n) < 0L; // rejection check
343 dl 1.1 u = mix64(nextSeed()) >>> 1) // retry
344     ;
345     r += origin;
346     }
347 dl 1.7 else { // range not representable as long
348 dl 1.1 while (r < origin || r >= bound)
349     r = mix64(nextSeed());
350     }
351     }
352     return r;
353     }
354    
355     /**
356     * The form of nextInt used by IntStream Spliterators.
357     * Exactly the same as long version, except for types.
358     *
359     * @param origin the least value, unless greater than bound
360     * @param bound the upper bound (exclusive), must not equal origin
361     * @return a pseudorandom value
362     */
363     final int internalNextInt(int origin, int bound) {
364     int r = mix32(nextSeed());
365     if (origin < bound) {
366     int n = bound - origin, m = n - 1;
367     if ((n & m) == 0L)
368     r = (r & m) + origin;
369     else if (n > 0) {
370     for (int u = r >>> 1;
371 dl 1.7 u + m - (r = u % n) < 0;
372 dl 1.1 u = mix32(nextSeed()) >>> 1)
373     ;
374     r += origin;
375     }
376     else {
377     while (r < origin || r >= bound)
378     r = mix32(nextSeed());
379     }
380     }
381     return r;
382     }
383    
384     /**
385     * The form of nextDouble used by DoubleStream Spliterators.
386     *
387     * @param origin the least value, unless greater than bound
388     * @param bound the upper bound (exclusive), must not equal origin
389     * @return a pseudorandom value
390     */
391     final double internalNextDouble(double origin, double bound) {
392 dl 1.5 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
393 dl 1.1 if (origin < bound) {
394     r = r * (bound - origin) + origin;
395 dl 1.7 if (r >= bound) // correct for rounding
396 dl 1.1 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
397     }
398     return r;
399     }
400    
401     /* ---------------- public methods ---------------- */
402    
403     /**
404 dl 1.7 * Creates a new SplittableRandom instance using the specified
405     * initial seed. SplittableRandom instances created with the same
406     * seed generate identical sequences of values.
407 dl 1.1 *
408     * @param seed the initial seed
409     */
410     public SplittableRandom(long seed) {
411     this(seed, 0);
412     }
413    
414     /**
415     * Creates a new SplittableRandom instance that is likely to
416     * generate sequences of values that are statistically independent
417     * of those of any other instances in the current program; and
418     * may, and typically does, vary across program invocations.
419     */
420     public SplittableRandom() {
421     this(nextDefaultSeed(), GAMMA_GAMMA);
422     }
423    
424     /**
425     * Constructs and returns a new SplittableRandom instance that
426     * shares no mutable state with this instance. However, with very
427     * high probability, the set of values collectively generated by
428     * the two objects has the same statistical properties as if the
429     * same quantity of values were generated by a single thread using
430     * a single SplittableRandom object. Either or both of the two
431     * objects may be further split using the {@code split()} method,
432     * and the same expected statistical properties apply to the
433     * entire set of generators constructed by such recursive
434     * splitting.
435     *
436     * @return the new SplittableRandom instance
437     */
438     public SplittableRandom split() {
439     return new SplittableRandom(nextSeed(), nextSplit);
440     }
441    
442     /**
443     * Returns a pseudorandom {@code int} value.
444     *
445 dl 1.7 * @return a pseudorandom {@code int} value
446 dl 1.1 */
447     public int nextInt() {
448     return mix32(nextSeed());
449     }
450    
451     /**
452 dl 1.7 * Returns a pseudorandom {@code int} value between zero (inclusive)
453 dl 1.1 * and the specified bound (exclusive).
454     *
455     * @param bound the bound on the random number to be returned. Must be
456     * positive.
457 dl 1.7 * @return a pseudorandom {@code int} value between zero
458 jsr166 1.10 * (inclusive) and the bound (exclusive)
459 dl 1.7 * @throws IllegalArgumentException if the bound is less than zero
460 dl 1.1 */
461     public int nextInt(int bound) {
462     if (bound <= 0)
463     throw new IllegalArgumentException("bound must be positive");
464     // Specialize internalNextInt for origin 0
465     int r = mix32(nextSeed());
466     int m = bound - 1;
467     if ((bound & m) == 0L) // power of two
468     r &= m;
469     else { // reject over-represented candidates
470     for (int u = r >>> 1;
471 dl 1.7 u + m - (r = u % bound) < 0;
472 dl 1.1 u = mix32(nextSeed()) >>> 1)
473     ;
474     }
475     return r;
476     }
477    
478     /**
479     * Returns a pseudorandom {@code int} value between the specified
480     * origin (inclusive) and the specified bound (exclusive).
481     *
482     * @param origin the least value returned
483     * @param bound the upper bound (exclusive)
484     * @return a pseudorandom {@code int} value between the origin
485 jsr166 1.10 * (inclusive) and the bound (exclusive)
486 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
487 dl 1.1 * or equal to {@code bound}
488     */
489     public int nextInt(int origin, int bound) {
490     if (origin >= bound)
491     throw new IllegalArgumentException("bound must be greater than origin");
492     return internalNextInt(origin, bound);
493     }
494    
495     /**
496     * Returns a pseudorandom {@code long} value.
497     *
498 dl 1.7 * @return a pseudorandom {@code long} value
499 dl 1.1 */
500     public long nextLong() {
501     return mix64(nextSeed());
502     }
503    
504     /**
505 dl 1.7 * Returns a pseudorandom {@code long} value between zero (inclusive)
506 dl 1.1 * and the specified bound (exclusive).
507     *
508     * @param bound the bound on the random number to be returned. Must be
509     * positive.
510 dl 1.7 * @return a pseudorandom {@code long} value between zero
511 jsr166 1.10 * (inclusive) and the bound (exclusive)
512 dl 1.7 * @throws IllegalArgumentException if {@code bound} is less than zero
513 dl 1.1 */
514     public long nextLong(long bound) {
515     if (bound <= 0)
516     throw new IllegalArgumentException("bound must be positive");
517     // Specialize internalNextLong for origin 0
518     long r = mix64(nextSeed());
519     long m = bound - 1;
520     if ((bound & m) == 0L) // power of two
521     r &= m;
522     else { // reject over-represented candidates
523     for (long u = r >>> 1;
524     u + m - (r = u % bound) < 0L;
525     u = mix64(nextSeed()) >>> 1)
526     ;
527     }
528     return r;
529     }
530    
531     /**
532     * Returns a pseudorandom {@code long} value between the specified
533     * origin (inclusive) and the specified bound (exclusive).
534     *
535     * @param origin the least value returned
536     * @param bound the upper bound (exclusive)
537     * @return a pseudorandom {@code long} value between the origin
538 jsr166 1.10 * (inclusive) and the bound (exclusive)
539 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
540 dl 1.1 * or equal to {@code bound}
541     */
542     public long nextLong(long origin, long bound) {
543     if (origin >= bound)
544     throw new IllegalArgumentException("bound must be greater than origin");
545     return internalNextLong(origin, bound);
546     }
547    
548     /**
549 dl 1.7 * Returns a pseudorandom {@code double} value between zero
550     * (inclusive) and one (exclusive).
551 dl 1.1 *
552 dl 1.7 * @return a pseudorandom {@code double} value between zero
553     * (inclusive) and one (exclusive)
554 dl 1.1 */
555     public double nextDouble() {
556 dl 1.5 return (nextLong() >>> 11) * DOUBLE_UNIT;
557 dl 1.1 }
558    
559     /**
560     * Returns a pseudorandom {@code double} value between 0.0
561     * (inclusive) and the specified bound (exclusive).
562     *
563     * @param bound the bound on the random number to be returned. Must be
564     * positive.
565 dl 1.7 * @return a pseudorandom {@code double} value between zero
566 jsr166 1.10 * (inclusive) and the bound (exclusive)
567 dl 1.7 * @throws IllegalArgumentException if {@code bound} is less than zero
568 dl 1.1 */
569     public double nextDouble(double bound) {
570 dl 1.7 if (!(bound > 0.0))
571 dl 1.1 throw new IllegalArgumentException("bound must be positive");
572     double result = nextDouble() * bound;
573     return (result < bound) ? result : // correct for rounding
574     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
575     }
576    
577     /**
578 dl 1.7 * Returns a pseudorandom {@code double} value between the specified
579 dl 1.1 * origin (inclusive) and bound (exclusive).
580     *
581     * @param origin the least value returned
582     * @param bound the upper bound
583     * @return a pseudorandom {@code double} value between the origin
584 jsr166 1.10 * (inclusive) and the bound (exclusive)
585 dl 1.1 * @throws IllegalArgumentException if {@code origin} is greater than
586     * or equal to {@code bound}
587     */
588     public double nextDouble(double origin, double bound) {
589 dl 1.7 if (!(origin < bound))
590 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
591     return internalNextDouble(origin, bound);
592     }
593    
594     // stream methods, coded in a way intended to better isolate for
595     // maintenance purposes the small differences across forms.
596    
597     /**
598 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
599 dl 1.1 * pseudorandom {@code int} values.
600     *
601     * @param streamSize the number of values to generate
602     * @return a stream of pseudorandom {@code int} values
603     * @throws IllegalArgumentException if {@code streamSize} is
604 dl 1.7 * less than zero
605 dl 1.1 */
606     public IntStream ints(long streamSize) {
607     if (streamSize < 0L)
608     throw new IllegalArgumentException("negative Stream size");
609     return StreamSupport.intStream
610     (new RandomIntsSpliterator
611     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
612     false);
613     }
614    
615     /**
616     * Returns an effectively unlimited stream of pseudorandom {@code int}
617 jsr166 1.10 * values.
618 dl 1.1 *
619     * @implNote This method is implemented to be equivalent to {@code
620     * ints(Long.MAX_VALUE)}.
621     *
622     * @return a stream of pseudorandom {@code int} values
623     */
624     public IntStream ints() {
625     return StreamSupport.intStream
626     (new RandomIntsSpliterator
627     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
628     false);
629     }
630    
631     /**
632 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
633 dl 1.1 * pseudorandom {@code int} values, each conforming to the given
634     * origin and bound.
635     *
636     * @param streamSize the number of values to generate
637     * @param randomNumberOrigin the origin of each random value
638     * @param randomNumberBound the bound of each random value
639     * @return a stream of pseudorandom {@code int} values,
640 jsr166 1.10 * each with the given origin and bound
641 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
642 dl 1.7 * less than zero, or {@code randomNumberOrigin}
643 dl 1.1 * is greater than or equal to {@code randomNumberBound}
644     */
645     public IntStream ints(long streamSize, int randomNumberOrigin,
646     int randomNumberBound) {
647     if (streamSize < 0L)
648     throw new IllegalArgumentException("negative Stream size");
649     if (randomNumberOrigin >= randomNumberBound)
650     throw new IllegalArgumentException("bound must be greater than origin");
651     return StreamSupport.intStream
652     (new RandomIntsSpliterator
653     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
654     false);
655     }
656    
657     /**
658     * Returns an effectively unlimited stream of pseudorandom {@code
659     * int} values, each conforming to the given origin and bound.
660     *
661     * @implNote This method is implemented to be equivalent to {@code
662     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
663     *
664     * @param randomNumberOrigin the origin of each random value
665     * @param randomNumberBound the bound of each random value
666     * @return a stream of pseudorandom {@code int} values,
667 jsr166 1.10 * each with the given origin and bound
668 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
669     * is greater than or equal to {@code randomNumberBound}
670     */
671     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
672     if (randomNumberOrigin >= randomNumberBound)
673     throw new IllegalArgumentException("bound must be greater than origin");
674     return StreamSupport.intStream
675     (new RandomIntsSpliterator
676     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
677     false);
678     }
679    
680     /**
681 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
682 dl 1.1 * pseudorandom {@code long} values.
683     *
684     * @param streamSize the number of values to generate
685 dl 1.7 * @return a stream of pseudorandom {@code long} values
686 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
687 dl 1.7 * less than zero
688 dl 1.1 */
689     public LongStream longs(long streamSize) {
690     if (streamSize < 0L)
691     throw new IllegalArgumentException("negative Stream size");
692     return StreamSupport.longStream
693     (new RandomLongsSpliterator
694     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
695     false);
696     }
697    
698     /**
699     * Returns an effectively unlimited stream of pseudorandom {@code long}
700     * values.
701     *
702     * @implNote This method is implemented to be equivalent to {@code
703     * longs(Long.MAX_VALUE)}.
704     *
705     * @return a stream of pseudorandom {@code long} values
706     */
707     public LongStream longs() {
708     return StreamSupport.longStream
709     (new RandomLongsSpliterator
710     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
711     false);
712     }
713    
714     /**
715 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
716 dl 1.1 * pseudorandom {@code long} values, each conforming to the
717     * given origin and bound.
718     *
719     * @param streamSize the number of values to generate
720     * @param randomNumberOrigin the origin of each random value
721     * @param randomNumberBound the bound of each random value
722     * @return a stream of pseudorandom {@code long} values,
723 jsr166 1.10 * each with the given origin and bound
724 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
725 dl 1.7 * less than zero, or {@code randomNumberOrigin}
726 dl 1.1 * is greater than or equal to {@code randomNumberBound}
727     */
728     public LongStream longs(long streamSize, long randomNumberOrigin,
729     long randomNumberBound) {
730     if (streamSize < 0L)
731     throw new IllegalArgumentException("negative Stream size");
732     if (randomNumberOrigin >= randomNumberBound)
733     throw new IllegalArgumentException("bound must be greater than origin");
734     return StreamSupport.longStream
735     (new RandomLongsSpliterator
736     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
737     false);
738     }
739    
740     /**
741     * Returns an effectively unlimited stream of pseudorandom {@code
742     * long} values, each conforming to the given origin and bound.
743     *
744     * @implNote This method is implemented to be equivalent to {@code
745     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
746     *
747     * @param randomNumberOrigin the origin of each random value
748     * @param randomNumberBound the bound of each random value
749     * @return a stream of pseudorandom {@code long} values,
750 jsr166 1.10 * each with the given origin and bound
751 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
752     * is greater than or equal to {@code randomNumberBound}
753     */
754     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
755     if (randomNumberOrigin >= randomNumberBound)
756     throw new IllegalArgumentException("bound must be greater than origin");
757     return StreamSupport.longStream
758     (new RandomLongsSpliterator
759     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
760     false);
761     }
762    
763     /**
764 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
765     * pseudorandom {@code double} values, each between zero
766     * (inclusive) and one (exclusive).
767 dl 1.1 *
768     * @param streamSize the number of values to generate
769     * @return a stream of {@code double} values
770     * @throws IllegalArgumentException if {@code streamSize} is
771 dl 1.7 * less than zero
772 dl 1.1 */
773     public DoubleStream doubles(long streamSize) {
774     if (streamSize < 0L)
775     throw new IllegalArgumentException("negative Stream size");
776     return StreamSupport.doubleStream
777     (new RandomDoublesSpliterator
778     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
779     false);
780     }
781    
782     /**
783     * Returns an effectively unlimited stream of pseudorandom {@code
784 dl 1.7 * double} values, each between zero (inclusive) and one
785     * (exclusive).
786 dl 1.1 *
787     * @implNote This method is implemented to be equivalent to {@code
788     * doubles(Long.MAX_VALUE)}.
789     *
790     * @return a stream of pseudorandom {@code double} values
791     */
792     public DoubleStream doubles() {
793     return StreamSupport.doubleStream
794     (new RandomDoublesSpliterator
795     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
796     false);
797     }
798    
799     /**
800 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
801 dl 1.1 * pseudorandom {@code double} values, each conforming to the
802     * given origin and bound.
803     *
804     * @param streamSize the number of values to generate
805     * @param randomNumberOrigin the origin of each random value
806     * @param randomNumberBound the bound of each random value
807     * @return a stream of pseudorandom {@code double} values,
808 jsr166 1.10 * each with the given origin and bound
809 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
810 jsr166 1.10 * less than zero
811 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
812     * is greater than or equal to {@code randomNumberBound}
813     */
814     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
815     double randomNumberBound) {
816     if (streamSize < 0L)
817     throw new IllegalArgumentException("negative Stream size");
818 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
819 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
820     return StreamSupport.doubleStream
821     (new RandomDoublesSpliterator
822     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
823     false);
824     }
825    
826     /**
827     * Returns an effectively unlimited stream of pseudorandom {@code
828     * double} values, each conforming to the given origin and bound.
829     *
830     * @implNote This method is implemented to be equivalent to {@code
831     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
832     *
833     * @param randomNumberOrigin the origin of each random value
834     * @param randomNumberBound the bound of each random value
835     * @return a stream of pseudorandom {@code double} values,
836 jsr166 1.10 * each with the given origin and bound
837 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
838     * is greater than or equal to {@code randomNumberBound}
839     */
840     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
841 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
842 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
843     return StreamSupport.doubleStream
844     (new RandomDoublesSpliterator
845     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
846     false);
847     }
848    
849     /**
850     * Spliterator for int streams. We multiplex the four int
851 dl 1.7 * versions into one class by treating a bound less than origin as
852 dl 1.1 * unbounded, and also by treating "infinite" as equivalent to
853     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
854     * approach. The long and double versions of this class are
855     * identical except for types.
856     */
857     static class RandomIntsSpliterator implements Spliterator.OfInt {
858     final SplittableRandom rng;
859     long index;
860     final long fence;
861     final int origin;
862     final int bound;
863     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
864     int origin, int bound) {
865     this.rng = rng; this.index = index; this.fence = fence;
866     this.origin = origin; this.bound = bound;
867     }
868    
869     public RandomIntsSpliterator trySplit() {
870     long i = index, m = (i + fence) >>> 1;
871     return (m <= i) ? null :
872     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
873     }
874    
875     public long estimateSize() {
876     return fence - index;
877     }
878    
879     public int characteristics() {
880     return (Spliterator.SIZED | Spliterator.SUBSIZED |
881 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
882 dl 1.1 }
883    
884     public boolean tryAdvance(IntConsumer consumer) {
885     if (consumer == null) throw new NullPointerException();
886     long i = index, f = fence;
887     if (i < f) {
888     consumer.accept(rng.internalNextInt(origin, bound));
889     index = i + 1;
890     return true;
891     }
892     return false;
893     }
894    
895     public void forEachRemaining(IntConsumer consumer) {
896     if (consumer == null) throw new NullPointerException();
897     long i = index, f = fence;
898     if (i < f) {
899     index = f;
900     int o = origin, b = bound;
901     do {
902     consumer.accept(rng.internalNextInt(o, b));
903     } while (++i < f);
904     }
905     }
906     }
907    
908     /**
909     * Spliterator for long streams.
910     */
911     static class RandomLongsSpliterator implements Spliterator.OfLong {
912     final SplittableRandom rng;
913     long index;
914     final long fence;
915     final long origin;
916     final long bound;
917     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
918     long origin, long bound) {
919     this.rng = rng; this.index = index; this.fence = fence;
920     this.origin = origin; this.bound = bound;
921     }
922    
923     public RandomLongsSpliterator trySplit() {
924     long i = index, m = (i + fence) >>> 1;
925     return (m <= i) ? null :
926     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
927     }
928    
929     public long estimateSize() {
930     return fence - index;
931     }
932    
933     public int characteristics() {
934     return (Spliterator.SIZED | Spliterator.SUBSIZED |
935 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
936 dl 1.1 }
937    
938     public boolean tryAdvance(LongConsumer consumer) {
939     if (consumer == null) throw new NullPointerException();
940     long i = index, f = fence;
941     if (i < f) {
942     consumer.accept(rng.internalNextLong(origin, bound));
943     index = i + 1;
944     return true;
945     }
946     return false;
947     }
948    
949     public void forEachRemaining(LongConsumer consumer) {
950     if (consumer == null) throw new NullPointerException();
951     long i = index, f = fence;
952     if (i < f) {
953     index = f;
954     long o = origin, b = bound;
955     do {
956     consumer.accept(rng.internalNextLong(o, b));
957     } while (++i < f);
958     }
959     }
960    
961     }
962    
963     /**
964     * Spliterator for double streams.
965     */
966     static class RandomDoublesSpliterator implements Spliterator.OfDouble {
967     final SplittableRandom rng;
968     long index;
969     final long fence;
970     final double origin;
971     final double bound;
972     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
973     double origin, double bound) {
974     this.rng = rng; this.index = index; this.fence = fence;
975     this.origin = origin; this.bound = bound;
976     }
977    
978     public RandomDoublesSpliterator trySplit() {
979     long i = index, m = (i + fence) >>> 1;
980     return (m <= i) ? null :
981     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
982     }
983    
984     public long estimateSize() {
985     return fence - index;
986     }
987    
988     public int characteristics() {
989     return (Spliterator.SIZED | Spliterator.SUBSIZED |
990 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
991 dl 1.1 }
992    
993     public boolean tryAdvance(DoubleConsumer consumer) {
994     if (consumer == null) throw new NullPointerException();
995     long i = index, f = fence;
996     if (i < f) {
997     consumer.accept(rng.internalNextDouble(origin, bound));
998     index = i + 1;
999     return true;
1000     }
1001     return false;
1002     }
1003    
1004     public void forEachRemaining(DoubleConsumer consumer) {
1005     if (consumer == null) throw new NullPointerException();
1006     long i = index, f = fence;
1007     if (i < f) {
1008     index = f;
1009     double o = origin, b = bound;
1010     do {
1011     consumer.accept(rng.internalNextDouble(o, b));
1012     } while (++i < f);
1013     }
1014     }
1015     }
1016    
1017     }