ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.13
Committed: Thu Jul 25 13:19:09 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.12: +54 -32 lines
Log Message:
Use 57bit gamma

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28 dl 1.12 import java.security.SecureRandom;
29 dl 1.1 import java.util.concurrent.atomic.AtomicLong;
30     import java.util.Spliterator;
31     import java.util.function.IntConsumer;
32     import java.util.function.LongConsumer;
33     import java.util.function.DoubleConsumer;
34     import java.util.stream.StreamSupport;
35     import java.util.stream.IntStream;
36     import java.util.stream.LongStream;
37     import java.util.stream.DoubleStream;
38    
39     /**
40     * A generator of uniform pseudorandom values applicable for use in
41     * (among other contexts) isolated parallel computations that may
42     * generate subtasks. Class SplittableRandom supports methods for
43 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
44 dl 1.1 * and {@code double} with similar usages as for class
45 jsr166 1.9 * {@link java.util.Random} but differs in the following ways:
46     *
47     * <ul>
48 dl 1.1 *
49     * <li>Series of generated values pass the DieHarder suite testing
50     * independence and uniformity properties of random number generators.
51     * (Most recently validated with <a
52     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
53     * 3.31.1</a>.) These tests validate only the methods for certain
54     * types and ranges, but similar properties are expected to hold, at
55 dl 1.11 * least approximately, for others as well. The <em>period</em>
56     * (length of any series of generated values before it repeats) is at
57     * least 2<sup>64</sup>. </li>
58 dl 1.1 *
59     * <li> Method {@link #split} constructs and returns a new
60     * SplittableRandom instance that shares no mutable state with the
61 dl 1.7 * current instance. However, with very high probability, the
62     * values collectively generated by the two objects have the same
63 dl 1.1 * statistical properties as if the same quantity of values were
64     * generated by a single thread using a single {@code
65     * SplittableRandom} object. </li>
66     *
67     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
68     * They are designed to be split, not shared, across threads. For
69     * example, a {@link java.util.concurrent.ForkJoinTask
70     * fork/join-style} computation using random numbers might include a
71     * construction of the form {@code new
72     * Subtask(aSplittableRandom.split()).fork()}.
73     *
74     * <li>This class provides additional methods for generating random
75     * streams, that employ the above techniques when used in {@code
76     * stream.parallel()} mode.</li>
77     *
78     * </ul>
79     *
80     * @author Guy Steele
81 dl 1.2 * @author Doug Lea
82 dl 1.1 * @since 1.8
83     */
84     public class SplittableRandom {
85    
86     /*
87     * File organization: First the non-public methods that constitute
88     * the main algorithm, then the main public methods, followed by
89     * some custom spliterator classes needed for stream methods.
90     *
91     * Credits: Primary algorithm and code by Guy Steele. Stream
92     * support methods by Doug Lea. Documentation jointly produced
93     * with additional help from Brian Goetz.
94     */
95    
96     /*
97     * Implementation Overview.
98     *
99     * This algorithm was inspired by the "DotMix" algorithm by
100     * Leiserson, Schardl, and Sukha "Deterministic Parallel
101     * Random-Number Generation for Dynamic-Multithreading Platforms",
102     * PPoPP 2012, but improves and extends it in several ways.
103     *
104 dl 1.7 * The primary update step (see method nextSeed()) is simply to
105     * add a constant ("gamma") to the current seed, modulo a prime
106     * ("George"). However, the nextLong and nextInt methods do not
107     * return this value, but instead the results of bit-mixing
108     * transformations that produce more uniformly distributed
109     * sequences.
110 dl 1.1 *
111     * "George" is the otherwise nameless (because it cannot be
112     * represented) prime number 2^64+13. Using a prime number larger
113     * than can fit in a long ensures that all possible long values
114     * can occur, plus 13 others that just get skipped over when they
115     * are encountered; see method addGammaModGeorge. For this to
116     * work, initial gamma values must be at least 13.
117     *
118     * The mix64 bit-mixing function called by nextLong and other
119     * methods computes the same value as the "64-bit finalizer"
120     * function in Austin Appleby's MurmurHash3 algorithm. See
121     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
122     * comments: "The constants for the finalizers were generated by a
123     * simple simulated-annealing algorithm, and both avalanche all
124 dl 1.13 * bits of 'h' to within 0.25% bias."
125     *
126     * The value of gamma differs for each instance across a series of
127     * splits, and is generated using an independent variant of the
128     * same algorithm, but operating across calls to split(), not
129     * calls to nextSeed(): Each instance carries the state of this
130     * generator as nextSplit. Gammas are treated as 57bit values,
131     * advancing by adding GAMMA_GAMMA mod GAMMA_PRIME, and bit-mixed
132     * with a 57-bit version of mix, using the "Mix01" multiplicative
133     * constants for MurmurHash3 described by David Stafford
134     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html).
135     * The value of GAMMA_GAMMA is arbitrary (except must be at least
136     * 13 and less than GAMMA_PRIME), but because it serves as the
137     * base of split sequences, should be subject to validation of
138     * consequent random number quality metrics.
139 dl 1.1 *
140     * The mix32 function used for nextInt just consists of two of the
141 dl 1.13 * five lines of mix64; avalanche testing shows that the 64-bit
142     * result has its top 32 bits avalanched well, though not the
143     * bottom 32 bits. DieHarder tests show that it is adequate for
144     * generating one random int from the 64-bit result of nextSeed.
145 dl 1.1 *
146     * Support for the default (no-argument) constructor relies on an
147     * AtomicLong (defaultSeedGenerator) to help perform the
148     * equivalent of a split of a statically constructed
149     * SplittableRandom. Unlike other cases, this split must be
150     * performed in a thread-safe manner. We use
151     * AtomicLong.compareAndSet as the (typically) most efficient
152 dl 1.12 * mechanism. To bootstrap, we start off using a SecureRandom
153     * initial default seed, and update using a fixed
154     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
155     * not 0, for its splitSeed argument (addGammaModGeorge(0,
156     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
157     * this root generator, even though the root is not explicitly
158     * represented as a SplittableRandom.
159 dl 1.1 */
160    
161     /**
162 dl 1.13 * The prime modulus for gamma values.
163     */
164     private static final long GAMMA_PRIME = (1L << 57) - 13L;
165    
166     /**
167 dl 1.12 * The value for producing new gamma values. Must be greater or
168 dl 1.13 * equal to 13 and less than GAMMA_PRIME. Otherwise, the value is
169     * arbitrary subject to validation of the resulting statistical
170     * quality of splits.
171 dl 1.1 */
172 dl 1.13 private static final long GAMMA_GAMMA = 0x00aae38294f712aabL;
173 dl 1.1
174     /**
175 dl 1.12 * The seed update value for default constructors. Must be
176 dl 1.13 * greater or equal to 13. Otherwise, the value is arbitrary
177     * subject to quality checks.
178 dl 1.1 */
179 dl 1.13 private static final long DEFAULT_SEED_GAMMA = 0x9e3779b97f4a7c15L;
180 dl 1.1
181     /**
182 dl 1.11 * The value 13 with 64bit sign bit set. Used in the signed
183     * comparison in addGammaModGeorge.
184     */
185     private static final long BOTTOM13 = 0x800000000000000DL;
186    
187     /**
188 dl 1.5 * The least non-zero value returned by nextDouble(). This value
189 dl 1.7 * is scaled by a random value of 53 bits to produce a result.
190 dl 1.5 */
191     private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
192    
193     /**
194 dl 1.1 * The next seed for default constructors.
195     */
196     private static final AtomicLong defaultSeedGenerator =
197 dl 1.12 new AtomicLong(getInitialDefaultSeed());
198 dl 1.1
199     /**
200     * The seed, updated only via method nextSeed.
201     */
202     private long seed;
203    
204     /**
205     * The constant value added to seed (mod George) on each update.
206     */
207     private final long gamma;
208    
209     /**
210     * The next seed to use for splits. Propagated using
211     * addGammaModGeorge across instances.
212     */
213     private final long nextSplit;
214    
215     /**
216     * Adds the given gamma value, g, to the given seed value s, mod
217     * George (2^64+13). We regard s and g as unsigned values
218     * (ranging from 0 to 2^64-1). We add g to s either once or twice
219     * (mod George) as necessary to produce an (unsigned) result less
220     * than 2^64. We require that g must be at least 13. This
221     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
222     * George < 2^64; thus we need only a conditional, not a loop,
223     * to be sure of getting a representable value.
224     *
225 dl 1.11 * Because Java comparison operators are signed, we implement this
226     * by conceptually offsetting seed values downwards by 2^63, so
227     * 0..13 is represented as Long.MIN_VALUE..BOTTOM13.
228     *
229     * @param s a seed value, viewed as a signed long
230 dl 1.1 * @param g a gamma value, 13 <= g (as unsigned)
231     */
232     private static long addGammaModGeorge(long s, long g) {
233     long p = s + g;
234 dl 1.11 return (p >= s) ? p : ((p >= BOTTOM13) ? p : p + g) - 13L;
235 dl 1.1 }
236    
237     /**
238     * Returns a bit-mixed transformation of its argument.
239     * See above for explanation.
240     */
241     private static long mix64(long z) {
242     z ^= (z >>> 33);
243     z *= 0xff51afd7ed558ccdL;
244     z ^= (z >>> 33);
245     z *= 0xc4ceb9fe1a85ec53L;
246     z ^= (z >>> 33);
247     return z;
248     }
249    
250     /**
251     * Returns a bit-mixed int transformation of its argument.
252     * See above for explanation.
253     */
254     private static int mix32(long z) {
255     z ^= (z >>> 33);
256     z *= 0xc4ceb9fe1a85ec53L;
257     return (int)(z >>> 32);
258     }
259    
260     /**
261 dl 1.13 * Returns a 57-bit mixed transformation of its argument. See
262     * above for explanation.
263     */
264     private static long mix57(long z) {
265     z ^= (z >>> 33);
266     z *= 0x7fb5d329728ea185L;
267     z &= 0x01FFFFFFFFFFFFFFL;
268     z ^= (z >>> 33);
269     z *= 0x81dadef4bc2dd44dL;
270     z &= 0x01FFFFFFFFFFFFFFL;
271     z ^= (z >>> 33);
272     return z;
273     }
274    
275     /**
276 dl 1.7 * Internal constructor used by all other constructors and by
277     * method split. Establishes the initial seed for this instance,
278     * and uses the given splitSeed to establish gamma, as well as the
279     * nextSplit to use by this instance. The loop to skip ineligible
280     * gammas very rarely iterates, and does so at most 13 times.
281     */
282     private SplittableRandom(long seed, long splitSeed) {
283     this.seed = seed;
284     long s = splitSeed, g;
285     do { // ensure gamma >= 13, considered as an unsigned integer
286 dl 1.13 s += GAMMA_GAMMA;
287     if (s >= GAMMA_PRIME)
288     s -= GAMMA_PRIME;
289     g = mix57(s);
290     } while (g < 13L);
291 dl 1.7 this.gamma = g;
292     this.nextSplit = s;
293     }
294    
295     /**
296     * Updates in-place and returns seed.
297     * See above for explanation.
298     */
299     private long nextSeed() {
300     return seed = addGammaModGeorge(seed, gamma);
301     }
302    
303     /**
304     * Atomically updates and returns next seed for default constructor.
305 dl 1.1 */
306     private static long nextDefaultSeed() {
307     long oldSeed, newSeed;
308     do {
309     oldSeed = defaultSeedGenerator.get();
310     newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
311     } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
312     return mix64(newSeed);
313     }
314    
315 dl 1.12 /**
316     * Returns an initial default seed.
317     */
318     private static long getInitialDefaultSeed() {
319     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
320     long s = (long)(seedBytes[0]) & 0xffL;
321     for (int i = 1; i < 8; ++i)
322     s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
323     return s;
324     }
325    
326 dl 1.1 /*
327     * Internal versions of nextX methods used by streams, as well as
328     * the public nextX(origin, bound) methods. These exist mainly to
329     * avoid the need for multiple versions of stream spliterators
330     * across the different exported forms of streams.
331     */
332    
333     /**
334     * The form of nextLong used by LongStream Spliterators. If
335     * origin is greater than bound, acts as unbounded form of
336     * nextLong, else as bounded form.
337     *
338     * @param origin the least value, unless greater than bound
339     * @param bound the upper bound (exclusive), must not equal origin
340     * @return a pseudorandom value
341     */
342     final long internalNextLong(long origin, long bound) {
343     /*
344     * Four Cases:
345     *
346     * 1. If the arguments indicate unbounded form, act as
347     * nextLong().
348     *
349     * 2. If the range is an exact power of two, apply the
350     * associated bit mask.
351     *
352     * 3. If the range is positive, loop to avoid potential bias
353     * when the implicit nextLong() bound (2<sup>64</sup>) is not
354     * evenly divisible by the range. The loop rejects candidates
355     * computed from otherwise over-represented values. The
356     * expected number of iterations under an ideal generator
357 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
358     * takes an unlovable form. Because the first candidate is
359     * already available, we need a break-in-the-middle
360     * construction, which is concisely but cryptically performed
361     * within the while-condition of a body-less for loop.
362 dl 1.1 *
363     * 4. Otherwise, the range cannot be represented as a positive
364 dl 1.4 * long. The loop repeatedly generates unbounded longs until
365     * obtaining a candidate meeting constraints (with an expected
366     * number of iterations of less than two).
367 dl 1.1 */
368    
369     long r = mix64(nextSeed());
370     if (origin < bound) {
371     long n = bound - origin, m = n - 1;
372 dl 1.7 if ((n & m) == 0L) // power of two
373 dl 1.1 r = (r & m) + origin;
374 dl 1.7 else if (n > 0L) { // reject over-represented candidates
375 dl 1.1 for (long u = r >>> 1; // ensure nonnegative
376 dl 1.7 u + m - (r = u % n) < 0L; // rejection check
377 dl 1.1 u = mix64(nextSeed()) >>> 1) // retry
378     ;
379     r += origin;
380     }
381 dl 1.7 else { // range not representable as long
382 dl 1.1 while (r < origin || r >= bound)
383     r = mix64(nextSeed());
384     }
385     }
386     return r;
387     }
388    
389     /**
390     * The form of nextInt used by IntStream Spliterators.
391     * Exactly the same as long version, except for types.
392     *
393     * @param origin the least value, unless greater than bound
394     * @param bound the upper bound (exclusive), must not equal origin
395     * @return a pseudorandom value
396     */
397     final int internalNextInt(int origin, int bound) {
398     int r = mix32(nextSeed());
399     if (origin < bound) {
400     int n = bound - origin, m = n - 1;
401 dl 1.13 if ((n & m) == 0)
402 dl 1.1 r = (r & m) + origin;
403     else if (n > 0) {
404     for (int u = r >>> 1;
405 dl 1.7 u + m - (r = u % n) < 0;
406 dl 1.1 u = mix32(nextSeed()) >>> 1)
407     ;
408     r += origin;
409     }
410     else {
411     while (r < origin || r >= bound)
412     r = mix32(nextSeed());
413     }
414     }
415     return r;
416     }
417    
418     /**
419     * The form of nextDouble used by DoubleStream Spliterators.
420     *
421     * @param origin the least value, unless greater than bound
422     * @param bound the upper bound (exclusive), must not equal origin
423     * @return a pseudorandom value
424     */
425     final double internalNextDouble(double origin, double bound) {
426 dl 1.5 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
427 dl 1.1 if (origin < bound) {
428     r = r * (bound - origin) + origin;
429 dl 1.7 if (r >= bound) // correct for rounding
430 dl 1.1 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
431     }
432     return r;
433     }
434    
435     /* ---------------- public methods ---------------- */
436    
437     /**
438 dl 1.7 * Creates a new SplittableRandom instance using the specified
439     * initial seed. SplittableRandom instances created with the same
440 dl 1.11 * seed in the same program generate identical sequences of values.
441 dl 1.1 *
442     * @param seed the initial seed
443     */
444     public SplittableRandom(long seed) {
445 dl 1.13 this(seed, 0L);
446 dl 1.1 }
447    
448     /**
449     * Creates a new SplittableRandom instance that is likely to
450     * generate sequences of values that are statistically independent
451     * of those of any other instances in the current program; and
452     * may, and typically does, vary across program invocations.
453     */
454     public SplittableRandom() {
455     this(nextDefaultSeed(), GAMMA_GAMMA);
456     }
457    
458     /**
459     * Constructs and returns a new SplittableRandom instance that
460     * shares no mutable state with this instance. However, with very
461     * high probability, the set of values collectively generated by
462     * the two objects has the same statistical properties as if the
463     * same quantity of values were generated by a single thread using
464     * a single SplittableRandom object. Either or both of the two
465     * objects may be further split using the {@code split()} method,
466     * and the same expected statistical properties apply to the
467     * entire set of generators constructed by such recursive
468     * splitting.
469     *
470     * @return the new SplittableRandom instance
471     */
472     public SplittableRandom split() {
473     return new SplittableRandom(nextSeed(), nextSplit);
474     }
475    
476     /**
477     * Returns a pseudorandom {@code int} value.
478     *
479 dl 1.7 * @return a pseudorandom {@code int} value
480 dl 1.1 */
481     public int nextInt() {
482     return mix32(nextSeed());
483     }
484    
485     /**
486 dl 1.7 * Returns a pseudorandom {@code int} value between zero (inclusive)
487 dl 1.1 * and the specified bound (exclusive).
488     *
489     * @param bound the bound on the random number to be returned. Must be
490     * positive.
491 dl 1.7 * @return a pseudorandom {@code int} value between zero
492 jsr166 1.10 * (inclusive) and the bound (exclusive)
493 dl 1.7 * @throws IllegalArgumentException if the bound is less than zero
494 dl 1.1 */
495     public int nextInt(int bound) {
496     if (bound <= 0)
497     throw new IllegalArgumentException("bound must be positive");
498     // Specialize internalNextInt for origin 0
499     int r = mix32(nextSeed());
500     int m = bound - 1;
501 dl 1.13 if ((bound & m) == 0) // power of two
502 dl 1.1 r &= m;
503     else { // reject over-represented candidates
504     for (int u = r >>> 1;
505 dl 1.7 u + m - (r = u % bound) < 0;
506 dl 1.1 u = mix32(nextSeed()) >>> 1)
507     ;
508     }
509     return r;
510     }
511    
512     /**
513     * Returns a pseudorandom {@code int} value between the specified
514     * origin (inclusive) and the specified bound (exclusive).
515     *
516     * @param origin the least value returned
517     * @param bound the upper bound (exclusive)
518     * @return a pseudorandom {@code int} value between the origin
519 jsr166 1.10 * (inclusive) and the bound (exclusive)
520 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
521 dl 1.1 * or equal to {@code bound}
522     */
523     public int nextInt(int origin, int bound) {
524     if (origin >= bound)
525     throw new IllegalArgumentException("bound must be greater than origin");
526     return internalNextInt(origin, bound);
527     }
528    
529     /**
530     * Returns a pseudorandom {@code long} value.
531     *
532 dl 1.7 * @return a pseudorandom {@code long} value
533 dl 1.1 */
534     public long nextLong() {
535     return mix64(nextSeed());
536     }
537    
538     /**
539 dl 1.7 * Returns a pseudorandom {@code long} value between zero (inclusive)
540 dl 1.1 * and the specified bound (exclusive).
541     *
542     * @param bound the bound on the random number to be returned. Must be
543     * positive.
544 dl 1.7 * @return a pseudorandom {@code long} value between zero
545 jsr166 1.10 * (inclusive) and the bound (exclusive)
546 dl 1.7 * @throws IllegalArgumentException if {@code bound} is less than zero
547 dl 1.1 */
548     public long nextLong(long bound) {
549     if (bound <= 0)
550     throw new IllegalArgumentException("bound must be positive");
551     // Specialize internalNextLong for origin 0
552     long r = mix64(nextSeed());
553     long m = bound - 1;
554     if ((bound & m) == 0L) // power of two
555     r &= m;
556     else { // reject over-represented candidates
557     for (long u = r >>> 1;
558     u + m - (r = u % bound) < 0L;
559     u = mix64(nextSeed()) >>> 1)
560     ;
561     }
562     return r;
563     }
564    
565     /**
566     * Returns a pseudorandom {@code long} value between the specified
567     * origin (inclusive) and the specified bound (exclusive).
568     *
569     * @param origin the least value returned
570     * @param bound the upper bound (exclusive)
571     * @return a pseudorandom {@code long} value between the origin
572 jsr166 1.10 * (inclusive) and the bound (exclusive)
573 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
574 dl 1.1 * or equal to {@code bound}
575     */
576     public long nextLong(long origin, long bound) {
577     if (origin >= bound)
578     throw new IllegalArgumentException("bound must be greater than origin");
579     return internalNextLong(origin, bound);
580     }
581    
582     /**
583 dl 1.7 * Returns a pseudorandom {@code double} value between zero
584     * (inclusive) and one (exclusive).
585 dl 1.1 *
586 dl 1.7 * @return a pseudorandom {@code double} value between zero
587     * (inclusive) and one (exclusive)
588 dl 1.1 */
589     public double nextDouble() {
590 dl 1.11 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
591 dl 1.1 }
592    
593     /**
594     * Returns a pseudorandom {@code double} value between 0.0
595     * (inclusive) and the specified bound (exclusive).
596     *
597     * @param bound the bound on the random number to be returned. Must be
598     * positive.
599 dl 1.7 * @return a pseudorandom {@code double} value between zero
600 jsr166 1.10 * (inclusive) and the bound (exclusive)
601 dl 1.7 * @throws IllegalArgumentException if {@code bound} is less than zero
602 dl 1.1 */
603     public double nextDouble(double bound) {
604 dl 1.7 if (!(bound > 0.0))
605 dl 1.1 throw new IllegalArgumentException("bound must be positive");
606 dl 1.11 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
607 dl 1.1 return (result < bound) ? result : // correct for rounding
608     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
609     }
610    
611     /**
612 dl 1.7 * Returns a pseudorandom {@code double} value between the specified
613 dl 1.1 * origin (inclusive) and bound (exclusive).
614     *
615     * @param origin the least value returned
616     * @param bound the upper bound
617     * @return a pseudorandom {@code double} value between the origin
618 jsr166 1.10 * (inclusive) and the bound (exclusive)
619 dl 1.1 * @throws IllegalArgumentException if {@code origin} is greater than
620     * or equal to {@code bound}
621     */
622     public double nextDouble(double origin, double bound) {
623 dl 1.7 if (!(origin < bound))
624 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
625     return internalNextDouble(origin, bound);
626     }
627    
628 dl 1.11 /**
629     * Returns a pseudorandom {@code boolean} value.
630     *
631     * @return a pseudorandom {@code boolean} value
632     */
633     public boolean nextBoolean() {
634     return mix32(nextSeed()) < 0;
635     }
636    
637 dl 1.1 // stream methods, coded in a way intended to better isolate for
638     // maintenance purposes the small differences across forms.
639    
640     /**
641 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
642 dl 1.1 * pseudorandom {@code int} values.
643     *
644     * @param streamSize the number of values to generate
645     * @return a stream of pseudorandom {@code int} values
646     * @throws IllegalArgumentException if {@code streamSize} is
647 dl 1.7 * less than zero
648 dl 1.1 */
649     public IntStream ints(long streamSize) {
650     if (streamSize < 0L)
651     throw new IllegalArgumentException("negative Stream size");
652     return StreamSupport.intStream
653     (new RandomIntsSpliterator
654     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
655     false);
656     }
657    
658     /**
659     * Returns an effectively unlimited stream of pseudorandom {@code int}
660 jsr166 1.10 * values.
661 dl 1.1 *
662     * @implNote This method is implemented to be equivalent to {@code
663     * ints(Long.MAX_VALUE)}.
664     *
665     * @return a stream of pseudorandom {@code int} values
666     */
667     public IntStream ints() {
668     return StreamSupport.intStream
669     (new RandomIntsSpliterator
670     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
671     false);
672     }
673    
674     /**
675 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
676 dl 1.1 * pseudorandom {@code int} values, each conforming to the given
677     * origin and bound.
678     *
679     * @param streamSize the number of values to generate
680     * @param randomNumberOrigin the origin of each random value
681     * @param randomNumberBound the bound of each random value
682     * @return a stream of pseudorandom {@code int} values,
683 jsr166 1.10 * each with the given origin and bound
684 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
685 dl 1.7 * less than zero, or {@code randomNumberOrigin}
686 dl 1.1 * is greater than or equal to {@code randomNumberBound}
687     */
688     public IntStream ints(long streamSize, int randomNumberOrigin,
689     int randomNumberBound) {
690     if (streamSize < 0L)
691     throw new IllegalArgumentException("negative Stream size");
692     if (randomNumberOrigin >= randomNumberBound)
693     throw new IllegalArgumentException("bound must be greater than origin");
694     return StreamSupport.intStream
695     (new RandomIntsSpliterator
696     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
697     false);
698     }
699    
700     /**
701     * Returns an effectively unlimited stream of pseudorandom {@code
702     * int} values, each conforming to the given origin and bound.
703     *
704     * @implNote This method is implemented to be equivalent to {@code
705     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
706     *
707     * @param randomNumberOrigin the origin of each random value
708     * @param randomNumberBound the bound of each random value
709     * @return a stream of pseudorandom {@code int} values,
710 jsr166 1.10 * each with the given origin and bound
711 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
712     * is greater than or equal to {@code randomNumberBound}
713     */
714     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
715     if (randomNumberOrigin >= randomNumberBound)
716     throw new IllegalArgumentException("bound must be greater than origin");
717     return StreamSupport.intStream
718     (new RandomIntsSpliterator
719     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
720     false);
721     }
722    
723     /**
724 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
725 dl 1.1 * pseudorandom {@code long} values.
726     *
727     * @param streamSize the number of values to generate
728 dl 1.7 * @return a stream of pseudorandom {@code long} values
729 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
730 dl 1.7 * less than zero
731 dl 1.1 */
732     public LongStream longs(long streamSize) {
733     if (streamSize < 0L)
734     throw new IllegalArgumentException("negative Stream size");
735     return StreamSupport.longStream
736     (new RandomLongsSpliterator
737     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
738     false);
739     }
740    
741     /**
742     * Returns an effectively unlimited stream of pseudorandom {@code long}
743     * values.
744     *
745     * @implNote This method is implemented to be equivalent to {@code
746     * longs(Long.MAX_VALUE)}.
747     *
748     * @return a stream of pseudorandom {@code long} values
749     */
750     public LongStream longs() {
751     return StreamSupport.longStream
752     (new RandomLongsSpliterator
753     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
754     false);
755     }
756    
757     /**
758 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
759 dl 1.1 * pseudorandom {@code long} values, each conforming to the
760     * given origin and bound.
761     *
762     * @param streamSize the number of values to generate
763     * @param randomNumberOrigin the origin of each random value
764     * @param randomNumberBound the bound of each random value
765     * @return a stream of pseudorandom {@code long} values,
766 jsr166 1.10 * each with the given origin and bound
767 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
768 dl 1.7 * less than zero, or {@code randomNumberOrigin}
769 dl 1.1 * is greater than or equal to {@code randomNumberBound}
770     */
771     public LongStream longs(long streamSize, long randomNumberOrigin,
772     long randomNumberBound) {
773     if (streamSize < 0L)
774     throw new IllegalArgumentException("negative Stream size");
775     if (randomNumberOrigin >= randomNumberBound)
776     throw new IllegalArgumentException("bound must be greater than origin");
777     return StreamSupport.longStream
778     (new RandomLongsSpliterator
779     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
780     false);
781     }
782    
783     /**
784     * Returns an effectively unlimited stream of pseudorandom {@code
785     * long} values, each conforming to the given origin and bound.
786     *
787     * @implNote This method is implemented to be equivalent to {@code
788     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
789     *
790     * @param randomNumberOrigin the origin of each random value
791     * @param randomNumberBound the bound of each random value
792     * @return a stream of pseudorandom {@code long} values,
793 jsr166 1.10 * each with the given origin and bound
794 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
795     * is greater than or equal to {@code randomNumberBound}
796     */
797     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
798     if (randomNumberOrigin >= randomNumberBound)
799     throw new IllegalArgumentException("bound must be greater than origin");
800     return StreamSupport.longStream
801     (new RandomLongsSpliterator
802     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
803     false);
804     }
805    
806     /**
807 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
808     * pseudorandom {@code double} values, each between zero
809     * (inclusive) and one (exclusive).
810 dl 1.1 *
811     * @param streamSize the number of values to generate
812     * @return a stream of {@code double} values
813     * @throws IllegalArgumentException if {@code streamSize} is
814 dl 1.7 * less than zero
815 dl 1.1 */
816     public DoubleStream doubles(long streamSize) {
817     if (streamSize < 0L)
818     throw new IllegalArgumentException("negative Stream size");
819     return StreamSupport.doubleStream
820     (new RandomDoublesSpliterator
821     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
822     false);
823     }
824    
825     /**
826     * Returns an effectively unlimited stream of pseudorandom {@code
827 dl 1.7 * double} values, each between zero (inclusive) and one
828     * (exclusive).
829 dl 1.1 *
830     * @implNote This method is implemented to be equivalent to {@code
831     * doubles(Long.MAX_VALUE)}.
832     *
833     * @return a stream of pseudorandom {@code double} values
834     */
835     public DoubleStream doubles() {
836     return StreamSupport.doubleStream
837     (new RandomDoublesSpliterator
838     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
839     false);
840     }
841    
842     /**
843 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
844 dl 1.1 * pseudorandom {@code double} values, each conforming to the
845     * given origin and bound.
846     *
847     * @param streamSize the number of values to generate
848     * @param randomNumberOrigin the origin of each random value
849     * @param randomNumberBound the bound of each random value
850     * @return a stream of pseudorandom {@code double} values,
851 jsr166 1.10 * each with the given origin and bound
852 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
853 jsr166 1.10 * less than zero
854 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
855     * is greater than or equal to {@code randomNumberBound}
856     */
857     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
858     double randomNumberBound) {
859     if (streamSize < 0L)
860     throw new IllegalArgumentException("negative Stream size");
861 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
862 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
863     return StreamSupport.doubleStream
864     (new RandomDoublesSpliterator
865     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
866     false);
867     }
868    
869     /**
870     * Returns an effectively unlimited stream of pseudorandom {@code
871     * double} values, each conforming to the given origin and bound.
872     *
873     * @implNote This method is implemented to be equivalent to {@code
874     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
875     *
876     * @param randomNumberOrigin the origin of each random value
877     * @param randomNumberBound the bound of each random value
878     * @return a stream of pseudorandom {@code double} values,
879 jsr166 1.10 * each with the given origin and bound
880 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
881     * is greater than or equal to {@code randomNumberBound}
882     */
883     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
884 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
885 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
886     return StreamSupport.doubleStream
887     (new RandomDoublesSpliterator
888     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
889     false);
890     }
891    
892     /**
893     * Spliterator for int streams. We multiplex the four int
894 dl 1.7 * versions into one class by treating a bound less than origin as
895 dl 1.1 * unbounded, and also by treating "infinite" as equivalent to
896     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
897     * approach. The long and double versions of this class are
898     * identical except for types.
899     */
900 dl 1.11 static final class RandomIntsSpliterator implements Spliterator.OfInt {
901 dl 1.1 final SplittableRandom rng;
902     long index;
903     final long fence;
904     final int origin;
905     final int bound;
906     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
907     int origin, int bound) {
908     this.rng = rng; this.index = index; this.fence = fence;
909     this.origin = origin; this.bound = bound;
910     }
911    
912     public RandomIntsSpliterator trySplit() {
913     long i = index, m = (i + fence) >>> 1;
914     return (m <= i) ? null :
915     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
916     }
917    
918     public long estimateSize() {
919     return fence - index;
920     }
921    
922     public int characteristics() {
923     return (Spliterator.SIZED | Spliterator.SUBSIZED |
924 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
925 dl 1.1 }
926    
927     public boolean tryAdvance(IntConsumer consumer) {
928     if (consumer == null) throw new NullPointerException();
929     long i = index, f = fence;
930     if (i < f) {
931     consumer.accept(rng.internalNextInt(origin, bound));
932     index = i + 1;
933     return true;
934     }
935     return false;
936     }
937    
938     public void forEachRemaining(IntConsumer consumer) {
939     if (consumer == null) throw new NullPointerException();
940     long i = index, f = fence;
941     if (i < f) {
942     index = f;
943     int o = origin, b = bound;
944     do {
945     consumer.accept(rng.internalNextInt(o, b));
946     } while (++i < f);
947     }
948     }
949     }
950    
951     /**
952     * Spliterator for long streams.
953     */
954 dl 1.11 static final class RandomLongsSpliterator implements Spliterator.OfLong {
955 dl 1.1 final SplittableRandom rng;
956     long index;
957     final long fence;
958     final long origin;
959     final long bound;
960     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
961     long origin, long bound) {
962     this.rng = rng; this.index = index; this.fence = fence;
963     this.origin = origin; this.bound = bound;
964     }
965    
966     public RandomLongsSpliterator trySplit() {
967     long i = index, m = (i + fence) >>> 1;
968     return (m <= i) ? null :
969     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
970     }
971    
972     public long estimateSize() {
973     return fence - index;
974     }
975    
976     public int characteristics() {
977     return (Spliterator.SIZED | Spliterator.SUBSIZED |
978 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
979 dl 1.1 }
980    
981     public boolean tryAdvance(LongConsumer consumer) {
982     if (consumer == null) throw new NullPointerException();
983     long i = index, f = fence;
984     if (i < f) {
985     consumer.accept(rng.internalNextLong(origin, bound));
986     index = i + 1;
987     return true;
988     }
989     return false;
990     }
991    
992     public void forEachRemaining(LongConsumer consumer) {
993     if (consumer == null) throw new NullPointerException();
994     long i = index, f = fence;
995     if (i < f) {
996     index = f;
997     long o = origin, b = bound;
998     do {
999     consumer.accept(rng.internalNextLong(o, b));
1000     } while (++i < f);
1001     }
1002     }
1003    
1004     }
1005    
1006     /**
1007     * Spliterator for double streams.
1008     */
1009 dl 1.11 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
1010 dl 1.1 final SplittableRandom rng;
1011     long index;
1012     final long fence;
1013     final double origin;
1014     final double bound;
1015     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
1016     double origin, double bound) {
1017     this.rng = rng; this.index = index; this.fence = fence;
1018     this.origin = origin; this.bound = bound;
1019     }
1020    
1021     public RandomDoublesSpliterator trySplit() {
1022     long i = index, m = (i + fence) >>> 1;
1023     return (m <= i) ? null :
1024     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
1025     }
1026    
1027     public long estimateSize() {
1028     return fence - index;
1029     }
1030    
1031     public int characteristics() {
1032     return (Spliterator.SIZED | Spliterator.SUBSIZED |
1033 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
1034 dl 1.1 }
1035    
1036     public boolean tryAdvance(DoubleConsumer consumer) {
1037     if (consumer == null) throw new NullPointerException();
1038     long i = index, f = fence;
1039     if (i < f) {
1040     consumer.accept(rng.internalNextDouble(origin, bound));
1041     index = i + 1;
1042     return true;
1043     }
1044     return false;
1045     }
1046    
1047     public void forEachRemaining(DoubleConsumer consumer) {
1048     if (consumer == null) throw new NullPointerException();
1049     long i = index, f = fence;
1050     if (i < f) {
1051     index = f;
1052     double o = origin, b = bound;
1053     do {
1054     consumer.accept(rng.internalNextDouble(o, b));
1055     } while (++i < f);
1056     }
1057     }
1058     }
1059    
1060     }