ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.14
Committed: Mon Aug 5 13:58:02 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.13: +4 -6 lines
Log Message:
Update mix57

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28 dl 1.12 import java.security.SecureRandom;
29 dl 1.1 import java.util.concurrent.atomic.AtomicLong;
30     import java.util.Spliterator;
31     import java.util.function.IntConsumer;
32     import java.util.function.LongConsumer;
33     import java.util.function.DoubleConsumer;
34     import java.util.stream.StreamSupport;
35     import java.util.stream.IntStream;
36     import java.util.stream.LongStream;
37     import java.util.stream.DoubleStream;
38    
39     /**
40     * A generator of uniform pseudorandom values applicable for use in
41     * (among other contexts) isolated parallel computations that may
42     * generate subtasks. Class SplittableRandom supports methods for
43 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
44 dl 1.1 * and {@code double} with similar usages as for class
45 jsr166 1.9 * {@link java.util.Random} but differs in the following ways:
46     *
47     * <ul>
48 dl 1.1 *
49     * <li>Series of generated values pass the DieHarder suite testing
50     * independence and uniformity properties of random number generators.
51     * (Most recently validated with <a
52     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
53     * 3.31.1</a>.) These tests validate only the methods for certain
54     * types and ranges, but similar properties are expected to hold, at
55 dl 1.11 * least approximately, for others as well. The <em>period</em>
56     * (length of any series of generated values before it repeats) is at
57     * least 2<sup>64</sup>. </li>
58 dl 1.1 *
59     * <li> Method {@link #split} constructs and returns a new
60     * SplittableRandom instance that shares no mutable state with the
61 dl 1.7 * current instance. However, with very high probability, the
62     * values collectively generated by the two objects have the same
63 dl 1.1 * statistical properties as if the same quantity of values were
64     * generated by a single thread using a single {@code
65     * SplittableRandom} object. </li>
66     *
67     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
68     * They are designed to be split, not shared, across threads. For
69     * example, a {@link java.util.concurrent.ForkJoinTask
70     * fork/join-style} computation using random numbers might include a
71     * construction of the form {@code new
72     * Subtask(aSplittableRandom.split()).fork()}.
73     *
74     * <li>This class provides additional methods for generating random
75     * streams, that employ the above techniques when used in {@code
76     * stream.parallel()} mode.</li>
77     *
78     * </ul>
79     *
80     * @author Guy Steele
81 dl 1.2 * @author Doug Lea
82 dl 1.1 * @since 1.8
83     */
84     public class SplittableRandom {
85    
86     /*
87     * File organization: First the non-public methods that constitute
88     * the main algorithm, then the main public methods, followed by
89     * some custom spliterator classes needed for stream methods.
90     *
91     * Credits: Primary algorithm and code by Guy Steele. Stream
92     * support methods by Doug Lea. Documentation jointly produced
93     * with additional help from Brian Goetz.
94     */
95    
96     /*
97     * Implementation Overview.
98     *
99     * This algorithm was inspired by the "DotMix" algorithm by
100     * Leiserson, Schardl, and Sukha "Deterministic Parallel
101     * Random-Number Generation for Dynamic-Multithreading Platforms",
102     * PPoPP 2012, but improves and extends it in several ways.
103     *
104 dl 1.7 * The primary update step (see method nextSeed()) is simply to
105     * add a constant ("gamma") to the current seed, modulo a prime
106     * ("George"). However, the nextLong and nextInt methods do not
107     * return this value, but instead the results of bit-mixing
108     * transformations that produce more uniformly distributed
109     * sequences.
110 dl 1.1 *
111     * "George" is the otherwise nameless (because it cannot be
112     * represented) prime number 2^64+13. Using a prime number larger
113     * than can fit in a long ensures that all possible long values
114     * can occur, plus 13 others that just get skipped over when they
115     * are encountered; see method addGammaModGeorge. For this to
116     * work, initial gamma values must be at least 13.
117     *
118     * The mix64 bit-mixing function called by nextLong and other
119     * methods computes the same value as the "64-bit finalizer"
120     * function in Austin Appleby's MurmurHash3 algorithm. See
121     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
122     * comments: "The constants for the finalizers were generated by a
123     * simple simulated-annealing algorithm, and both avalanche all
124 dl 1.13 * bits of 'h' to within 0.25% bias."
125     *
126     * The value of gamma differs for each instance across a series of
127     * splits, and is generated using an independent variant of the
128     * same algorithm, but operating across calls to split(), not
129     * calls to nextSeed(): Each instance carries the state of this
130     * generator as nextSplit. Gammas are treated as 57bit values,
131     * advancing by adding GAMMA_GAMMA mod GAMMA_PRIME, and bit-mixed
132 dl 1.14 * with a 57-bit version of mix, using the "Mix13" multiplicative
133 dl 1.13 * constants for MurmurHash3 described by David Stafford
134     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html).
135     * The value of GAMMA_GAMMA is arbitrary (except must be at least
136     * 13 and less than GAMMA_PRIME), but because it serves as the
137     * base of split sequences, should be subject to validation of
138     * consequent random number quality metrics.
139 dl 1.1 *
140     * The mix32 function used for nextInt just consists of two of the
141 dl 1.13 * five lines of mix64; avalanche testing shows that the 64-bit
142     * result has its top 32 bits avalanched well, though not the
143     * bottom 32 bits. DieHarder tests show that it is adequate for
144     * generating one random int from the 64-bit result of nextSeed.
145 dl 1.1 *
146     * Support for the default (no-argument) constructor relies on an
147     * AtomicLong (defaultSeedGenerator) to help perform the
148     * equivalent of a split of a statically constructed
149     * SplittableRandom. Unlike other cases, this split must be
150     * performed in a thread-safe manner. We use
151     * AtomicLong.compareAndSet as the (typically) most efficient
152 dl 1.12 * mechanism. To bootstrap, we start off using a SecureRandom
153     * initial default seed, and update using a fixed
154     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
155     * not 0, for its splitSeed argument (addGammaModGeorge(0,
156     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
157     * this root generator, even though the root is not explicitly
158     * represented as a SplittableRandom.
159 dl 1.1 */
160    
161     /**
162 dl 1.13 * The prime modulus for gamma values.
163     */
164     private static final long GAMMA_PRIME = (1L << 57) - 13L;
165    
166     /**
167 dl 1.12 * The value for producing new gamma values. Must be greater or
168 dl 1.13 * equal to 13 and less than GAMMA_PRIME. Otherwise, the value is
169     * arbitrary subject to validation of the resulting statistical
170     * quality of splits.
171 dl 1.1 */
172 dl 1.13 private static final long GAMMA_GAMMA = 0x00aae38294f712aabL;
173 dl 1.1
174     /**
175 dl 1.12 * The seed update value for default constructors. Must be
176 dl 1.13 * greater or equal to 13. Otherwise, the value is arbitrary
177     * subject to quality checks.
178 dl 1.1 */
179 dl 1.13 private static final long DEFAULT_SEED_GAMMA = 0x9e3779b97f4a7c15L;
180 dl 1.1
181     /**
182 dl 1.11 * The value 13 with 64bit sign bit set. Used in the signed
183     * comparison in addGammaModGeorge.
184     */
185     private static final long BOTTOM13 = 0x800000000000000DL;
186    
187     /**
188 dl 1.5 * The least non-zero value returned by nextDouble(). This value
189 dl 1.7 * is scaled by a random value of 53 bits to produce a result.
190 dl 1.5 */
191     private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
192    
193     /**
194 dl 1.1 * The next seed for default constructors.
195     */
196     private static final AtomicLong defaultSeedGenerator =
197 dl 1.12 new AtomicLong(getInitialDefaultSeed());
198 dl 1.1
199     /**
200     * The seed, updated only via method nextSeed.
201     */
202     private long seed;
203    
204     /**
205     * The constant value added to seed (mod George) on each update.
206     */
207     private final long gamma;
208    
209     /**
210     * The next seed to use for splits. Propagated using
211     * addGammaModGeorge across instances.
212     */
213     private final long nextSplit;
214    
215     /**
216     * Adds the given gamma value, g, to the given seed value s, mod
217     * George (2^64+13). We regard s and g as unsigned values
218     * (ranging from 0 to 2^64-1). We add g to s either once or twice
219     * (mod George) as necessary to produce an (unsigned) result less
220     * than 2^64. We require that g must be at least 13. This
221     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
222     * George < 2^64; thus we need only a conditional, not a loop,
223     * to be sure of getting a representable value.
224     *
225 dl 1.11 * Because Java comparison operators are signed, we implement this
226     * by conceptually offsetting seed values downwards by 2^63, so
227     * 0..13 is represented as Long.MIN_VALUE..BOTTOM13.
228     *
229     * @param s a seed value, viewed as a signed long
230 dl 1.1 * @param g a gamma value, 13 <= g (as unsigned)
231     */
232     private static long addGammaModGeorge(long s, long g) {
233     long p = s + g;
234 dl 1.11 return (p >= s) ? p : ((p >= BOTTOM13) ? p : p + g) - 13L;
235 dl 1.1 }
236    
237     /**
238     * Returns a bit-mixed transformation of its argument.
239     * See above for explanation.
240     */
241     private static long mix64(long z) {
242     z ^= (z >>> 33);
243     z *= 0xff51afd7ed558ccdL;
244     z ^= (z >>> 33);
245     z *= 0xc4ceb9fe1a85ec53L;
246     z ^= (z >>> 33);
247     return z;
248     }
249    
250     /**
251     * Returns a bit-mixed int transformation of its argument.
252     * See above for explanation.
253     */
254     private static int mix32(long z) {
255     z ^= (z >>> 33);
256     z *= 0xc4ceb9fe1a85ec53L;
257     return (int)(z >>> 32);
258     }
259    
260     /**
261 dl 1.13 * Returns a 57-bit mixed transformation of its argument. See
262     * above for explanation.
263     */
264     private static long mix57(long z) {
265 dl 1.14 z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
266 dl 1.13 z &= 0x01FFFFFFFFFFFFFFL;
267 dl 1.14 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
268 dl 1.13 z &= 0x01FFFFFFFFFFFFFFL;
269 dl 1.14 z ^= (z >>> 31);
270 dl 1.13 return z;
271     }
272    
273     /**
274 dl 1.7 * Internal constructor used by all other constructors and by
275     * method split. Establishes the initial seed for this instance,
276     * and uses the given splitSeed to establish gamma, as well as the
277     * nextSplit to use by this instance. The loop to skip ineligible
278     * gammas very rarely iterates, and does so at most 13 times.
279     */
280     private SplittableRandom(long seed, long splitSeed) {
281     this.seed = seed;
282     long s = splitSeed, g;
283     do { // ensure gamma >= 13, considered as an unsigned integer
284 dl 1.13 s += GAMMA_GAMMA;
285     if (s >= GAMMA_PRIME)
286     s -= GAMMA_PRIME;
287     g = mix57(s);
288     } while (g < 13L);
289 dl 1.7 this.gamma = g;
290     this.nextSplit = s;
291     }
292    
293     /**
294     * Updates in-place and returns seed.
295     * See above for explanation.
296     */
297     private long nextSeed() {
298     return seed = addGammaModGeorge(seed, gamma);
299     }
300    
301     /**
302     * Atomically updates and returns next seed for default constructor.
303 dl 1.1 */
304     private static long nextDefaultSeed() {
305     long oldSeed, newSeed;
306     do {
307     oldSeed = defaultSeedGenerator.get();
308     newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
309     } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
310     return mix64(newSeed);
311     }
312    
313 dl 1.12 /**
314     * Returns an initial default seed.
315     */
316     private static long getInitialDefaultSeed() {
317     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
318     long s = (long)(seedBytes[0]) & 0xffL;
319     for (int i = 1; i < 8; ++i)
320     s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
321     return s;
322     }
323    
324 dl 1.1 /*
325     * Internal versions of nextX methods used by streams, as well as
326     * the public nextX(origin, bound) methods. These exist mainly to
327     * avoid the need for multiple versions of stream spliterators
328     * across the different exported forms of streams.
329     */
330    
331     /**
332     * The form of nextLong used by LongStream Spliterators. If
333     * origin is greater than bound, acts as unbounded form of
334     * nextLong, else as bounded form.
335     *
336     * @param origin the least value, unless greater than bound
337     * @param bound the upper bound (exclusive), must not equal origin
338     * @return a pseudorandom value
339     */
340     final long internalNextLong(long origin, long bound) {
341     /*
342     * Four Cases:
343     *
344     * 1. If the arguments indicate unbounded form, act as
345     * nextLong().
346     *
347     * 2. If the range is an exact power of two, apply the
348     * associated bit mask.
349     *
350     * 3. If the range is positive, loop to avoid potential bias
351     * when the implicit nextLong() bound (2<sup>64</sup>) is not
352     * evenly divisible by the range. The loop rejects candidates
353     * computed from otherwise over-represented values. The
354     * expected number of iterations under an ideal generator
355 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
356     * takes an unlovable form. Because the first candidate is
357     * already available, we need a break-in-the-middle
358     * construction, which is concisely but cryptically performed
359     * within the while-condition of a body-less for loop.
360 dl 1.1 *
361     * 4. Otherwise, the range cannot be represented as a positive
362 dl 1.4 * long. The loop repeatedly generates unbounded longs until
363     * obtaining a candidate meeting constraints (with an expected
364     * number of iterations of less than two).
365 dl 1.1 */
366    
367     long r = mix64(nextSeed());
368     if (origin < bound) {
369     long n = bound - origin, m = n - 1;
370 dl 1.7 if ((n & m) == 0L) // power of two
371 dl 1.1 r = (r & m) + origin;
372 dl 1.7 else if (n > 0L) { // reject over-represented candidates
373 dl 1.1 for (long u = r >>> 1; // ensure nonnegative
374 dl 1.7 u + m - (r = u % n) < 0L; // rejection check
375 dl 1.1 u = mix64(nextSeed()) >>> 1) // retry
376     ;
377     r += origin;
378     }
379 dl 1.7 else { // range not representable as long
380 dl 1.1 while (r < origin || r >= bound)
381     r = mix64(nextSeed());
382     }
383     }
384     return r;
385     }
386    
387     /**
388     * The form of nextInt used by IntStream Spliterators.
389     * Exactly the same as long version, except for types.
390     *
391     * @param origin the least value, unless greater than bound
392     * @param bound the upper bound (exclusive), must not equal origin
393     * @return a pseudorandom value
394     */
395     final int internalNextInt(int origin, int bound) {
396     int r = mix32(nextSeed());
397     if (origin < bound) {
398     int n = bound - origin, m = n - 1;
399 dl 1.13 if ((n & m) == 0)
400 dl 1.1 r = (r & m) + origin;
401     else if (n > 0) {
402     for (int u = r >>> 1;
403 dl 1.7 u + m - (r = u % n) < 0;
404 dl 1.1 u = mix32(nextSeed()) >>> 1)
405     ;
406     r += origin;
407     }
408     else {
409     while (r < origin || r >= bound)
410     r = mix32(nextSeed());
411     }
412     }
413     return r;
414     }
415    
416     /**
417     * The form of nextDouble used by DoubleStream Spliterators.
418     *
419     * @param origin the least value, unless greater than bound
420     * @param bound the upper bound (exclusive), must not equal origin
421     * @return a pseudorandom value
422     */
423     final double internalNextDouble(double origin, double bound) {
424 dl 1.5 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
425 dl 1.1 if (origin < bound) {
426     r = r * (bound - origin) + origin;
427 dl 1.7 if (r >= bound) // correct for rounding
428 dl 1.1 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
429     }
430     return r;
431     }
432    
433     /* ---------------- public methods ---------------- */
434    
435     /**
436 dl 1.7 * Creates a new SplittableRandom instance using the specified
437     * initial seed. SplittableRandom instances created with the same
438 dl 1.11 * seed in the same program generate identical sequences of values.
439 dl 1.1 *
440     * @param seed the initial seed
441     */
442     public SplittableRandom(long seed) {
443 dl 1.13 this(seed, 0L);
444 dl 1.1 }
445    
446     /**
447     * Creates a new SplittableRandom instance that is likely to
448     * generate sequences of values that are statistically independent
449     * of those of any other instances in the current program; and
450     * may, and typically does, vary across program invocations.
451     */
452     public SplittableRandom() {
453     this(nextDefaultSeed(), GAMMA_GAMMA);
454     }
455    
456     /**
457     * Constructs and returns a new SplittableRandom instance that
458     * shares no mutable state with this instance. However, with very
459     * high probability, the set of values collectively generated by
460     * the two objects has the same statistical properties as if the
461     * same quantity of values were generated by a single thread using
462     * a single SplittableRandom object. Either or both of the two
463     * objects may be further split using the {@code split()} method,
464     * and the same expected statistical properties apply to the
465     * entire set of generators constructed by such recursive
466     * splitting.
467     *
468     * @return the new SplittableRandom instance
469     */
470     public SplittableRandom split() {
471     return new SplittableRandom(nextSeed(), nextSplit);
472     }
473    
474     /**
475     * Returns a pseudorandom {@code int} value.
476     *
477 dl 1.7 * @return a pseudorandom {@code int} value
478 dl 1.1 */
479     public int nextInt() {
480     return mix32(nextSeed());
481     }
482    
483     /**
484 dl 1.7 * Returns a pseudorandom {@code int} value between zero (inclusive)
485 dl 1.1 * and the specified bound (exclusive).
486     *
487     * @param bound the bound on the random number to be returned. Must be
488     * positive.
489 dl 1.7 * @return a pseudorandom {@code int} value between zero
490 jsr166 1.10 * (inclusive) and the bound (exclusive)
491 dl 1.7 * @throws IllegalArgumentException if the bound is less than zero
492 dl 1.1 */
493     public int nextInt(int bound) {
494     if (bound <= 0)
495     throw new IllegalArgumentException("bound must be positive");
496     // Specialize internalNextInt for origin 0
497     int r = mix32(nextSeed());
498     int m = bound - 1;
499 dl 1.13 if ((bound & m) == 0) // power of two
500 dl 1.1 r &= m;
501     else { // reject over-represented candidates
502     for (int u = r >>> 1;
503 dl 1.7 u + m - (r = u % bound) < 0;
504 dl 1.1 u = mix32(nextSeed()) >>> 1)
505     ;
506     }
507     return r;
508     }
509    
510     /**
511     * Returns a pseudorandom {@code int} value between the specified
512     * origin (inclusive) and the specified bound (exclusive).
513     *
514     * @param origin the least value returned
515     * @param bound the upper bound (exclusive)
516     * @return a pseudorandom {@code int} value between the origin
517 jsr166 1.10 * (inclusive) and the bound (exclusive)
518 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
519 dl 1.1 * or equal to {@code bound}
520     */
521     public int nextInt(int origin, int bound) {
522     if (origin >= bound)
523     throw new IllegalArgumentException("bound must be greater than origin");
524     return internalNextInt(origin, bound);
525     }
526    
527     /**
528     * Returns a pseudorandom {@code long} value.
529     *
530 dl 1.7 * @return a pseudorandom {@code long} value
531 dl 1.1 */
532     public long nextLong() {
533     return mix64(nextSeed());
534     }
535    
536     /**
537 dl 1.7 * Returns a pseudorandom {@code long} value between zero (inclusive)
538 dl 1.1 * and the specified bound (exclusive).
539     *
540     * @param bound the bound on the random number to be returned. Must be
541     * positive.
542 dl 1.7 * @return a pseudorandom {@code long} value between zero
543 jsr166 1.10 * (inclusive) and the bound (exclusive)
544 dl 1.7 * @throws IllegalArgumentException if {@code bound} is less than zero
545 dl 1.1 */
546     public long nextLong(long bound) {
547     if (bound <= 0)
548     throw new IllegalArgumentException("bound must be positive");
549     // Specialize internalNextLong for origin 0
550     long r = mix64(nextSeed());
551     long m = bound - 1;
552     if ((bound & m) == 0L) // power of two
553     r &= m;
554     else { // reject over-represented candidates
555     for (long u = r >>> 1;
556     u + m - (r = u % bound) < 0L;
557     u = mix64(nextSeed()) >>> 1)
558     ;
559     }
560     return r;
561     }
562    
563     /**
564     * Returns a pseudorandom {@code long} value between the specified
565     * origin (inclusive) and the specified bound (exclusive).
566     *
567     * @param origin the least value returned
568     * @param bound the upper bound (exclusive)
569     * @return a pseudorandom {@code long} value between the origin
570 jsr166 1.10 * (inclusive) and the bound (exclusive)
571 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
572 dl 1.1 * or equal to {@code bound}
573     */
574     public long nextLong(long origin, long bound) {
575     if (origin >= bound)
576     throw new IllegalArgumentException("bound must be greater than origin");
577     return internalNextLong(origin, bound);
578     }
579    
580     /**
581 dl 1.7 * Returns a pseudorandom {@code double} value between zero
582     * (inclusive) and one (exclusive).
583 dl 1.1 *
584 dl 1.7 * @return a pseudorandom {@code double} value between zero
585     * (inclusive) and one (exclusive)
586 dl 1.1 */
587     public double nextDouble() {
588 dl 1.11 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
589 dl 1.1 }
590    
591     /**
592     * Returns a pseudorandom {@code double} value between 0.0
593     * (inclusive) and the specified bound (exclusive).
594     *
595     * @param bound the bound on the random number to be returned. Must be
596     * positive.
597 dl 1.7 * @return a pseudorandom {@code double} value between zero
598 jsr166 1.10 * (inclusive) and the bound (exclusive)
599 dl 1.7 * @throws IllegalArgumentException if {@code bound} is less than zero
600 dl 1.1 */
601     public double nextDouble(double bound) {
602 dl 1.7 if (!(bound > 0.0))
603 dl 1.1 throw new IllegalArgumentException("bound must be positive");
604 dl 1.11 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
605 dl 1.1 return (result < bound) ? result : // correct for rounding
606     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
607     }
608    
609     /**
610 dl 1.7 * Returns a pseudorandom {@code double} value between the specified
611 dl 1.1 * origin (inclusive) and bound (exclusive).
612     *
613     * @param origin the least value returned
614     * @param bound the upper bound
615     * @return a pseudorandom {@code double} value between the origin
616 jsr166 1.10 * (inclusive) and the bound (exclusive)
617 dl 1.1 * @throws IllegalArgumentException if {@code origin} is greater than
618     * or equal to {@code bound}
619     */
620     public double nextDouble(double origin, double bound) {
621 dl 1.7 if (!(origin < bound))
622 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
623     return internalNextDouble(origin, bound);
624     }
625    
626 dl 1.11 /**
627     * Returns a pseudorandom {@code boolean} value.
628     *
629     * @return a pseudorandom {@code boolean} value
630     */
631     public boolean nextBoolean() {
632     return mix32(nextSeed()) < 0;
633     }
634    
635 dl 1.1 // stream methods, coded in a way intended to better isolate for
636     // maintenance purposes the small differences across forms.
637    
638     /**
639 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
640 dl 1.1 * pseudorandom {@code int} values.
641     *
642     * @param streamSize the number of values to generate
643     * @return a stream of pseudorandom {@code int} values
644     * @throws IllegalArgumentException if {@code streamSize} is
645 dl 1.7 * less than zero
646 dl 1.1 */
647     public IntStream ints(long streamSize) {
648     if (streamSize < 0L)
649     throw new IllegalArgumentException("negative Stream size");
650     return StreamSupport.intStream
651     (new RandomIntsSpliterator
652     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
653     false);
654     }
655    
656     /**
657     * Returns an effectively unlimited stream of pseudorandom {@code int}
658 jsr166 1.10 * values.
659 dl 1.1 *
660     * @implNote This method is implemented to be equivalent to {@code
661     * ints(Long.MAX_VALUE)}.
662     *
663     * @return a stream of pseudorandom {@code int} values
664     */
665     public IntStream ints() {
666     return StreamSupport.intStream
667     (new RandomIntsSpliterator
668     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
669     false);
670     }
671    
672     /**
673 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
674 dl 1.1 * pseudorandom {@code int} values, each conforming to the given
675     * origin and bound.
676     *
677     * @param streamSize the number of values to generate
678     * @param randomNumberOrigin the origin of each random value
679     * @param randomNumberBound the bound of each random value
680     * @return a stream of pseudorandom {@code int} values,
681 jsr166 1.10 * each with the given origin and bound
682 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
683 dl 1.7 * less than zero, or {@code randomNumberOrigin}
684 dl 1.1 * is greater than or equal to {@code randomNumberBound}
685     */
686     public IntStream ints(long streamSize, int randomNumberOrigin,
687     int randomNumberBound) {
688     if (streamSize < 0L)
689     throw new IllegalArgumentException("negative Stream size");
690     if (randomNumberOrigin >= randomNumberBound)
691     throw new IllegalArgumentException("bound must be greater than origin");
692     return StreamSupport.intStream
693     (new RandomIntsSpliterator
694     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
695     false);
696     }
697    
698     /**
699     * Returns an effectively unlimited stream of pseudorandom {@code
700     * int} values, each conforming to the given origin and bound.
701     *
702     * @implNote This method is implemented to be equivalent to {@code
703     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
704     *
705     * @param randomNumberOrigin the origin of each random value
706     * @param randomNumberBound the bound of each random value
707     * @return a stream of pseudorandom {@code int} values,
708 jsr166 1.10 * each with the given origin and bound
709 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
710     * is greater than or equal to {@code randomNumberBound}
711     */
712     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
713     if (randomNumberOrigin >= randomNumberBound)
714     throw new IllegalArgumentException("bound must be greater than origin");
715     return StreamSupport.intStream
716     (new RandomIntsSpliterator
717     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
718     false);
719     }
720    
721     /**
722 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
723 dl 1.1 * pseudorandom {@code long} values.
724     *
725     * @param streamSize the number of values to generate
726 dl 1.7 * @return a stream of pseudorandom {@code long} values
727 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
728 dl 1.7 * less than zero
729 dl 1.1 */
730     public LongStream longs(long streamSize) {
731     if (streamSize < 0L)
732     throw new IllegalArgumentException("negative Stream size");
733     return StreamSupport.longStream
734     (new RandomLongsSpliterator
735     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
736     false);
737     }
738    
739     /**
740     * Returns an effectively unlimited stream of pseudorandom {@code long}
741     * values.
742     *
743     * @implNote This method is implemented to be equivalent to {@code
744     * longs(Long.MAX_VALUE)}.
745     *
746     * @return a stream of pseudorandom {@code long} values
747     */
748     public LongStream longs() {
749     return StreamSupport.longStream
750     (new RandomLongsSpliterator
751     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
752     false);
753     }
754    
755     /**
756 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
757 dl 1.1 * pseudorandom {@code long} values, each conforming to the
758     * given origin and bound.
759     *
760     * @param streamSize the number of values to generate
761     * @param randomNumberOrigin the origin of each random value
762     * @param randomNumberBound the bound of each random value
763     * @return a stream of pseudorandom {@code long} values,
764 jsr166 1.10 * each with the given origin and bound
765 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
766 dl 1.7 * less than zero, or {@code randomNumberOrigin}
767 dl 1.1 * is greater than or equal to {@code randomNumberBound}
768     */
769     public LongStream longs(long streamSize, long randomNumberOrigin,
770     long randomNumberBound) {
771     if (streamSize < 0L)
772     throw new IllegalArgumentException("negative Stream size");
773     if (randomNumberOrigin >= randomNumberBound)
774     throw new IllegalArgumentException("bound must be greater than origin");
775     return StreamSupport.longStream
776     (new RandomLongsSpliterator
777     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
778     false);
779     }
780    
781     /**
782     * Returns an effectively unlimited stream of pseudorandom {@code
783     * long} values, each conforming to the given origin and bound.
784     *
785     * @implNote This method is implemented to be equivalent to {@code
786     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
787     *
788     * @param randomNumberOrigin the origin of each random value
789     * @param randomNumberBound the bound of each random value
790     * @return a stream of pseudorandom {@code long} values,
791 jsr166 1.10 * each with the given origin and bound
792 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
793     * is greater than or equal to {@code randomNumberBound}
794     */
795     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
796     if (randomNumberOrigin >= randomNumberBound)
797     throw new IllegalArgumentException("bound must be greater than origin");
798     return StreamSupport.longStream
799     (new RandomLongsSpliterator
800     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
801     false);
802     }
803    
804     /**
805 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
806     * pseudorandom {@code double} values, each between zero
807     * (inclusive) and one (exclusive).
808 dl 1.1 *
809     * @param streamSize the number of values to generate
810     * @return a stream of {@code double} values
811     * @throws IllegalArgumentException if {@code streamSize} is
812 dl 1.7 * less than zero
813 dl 1.1 */
814     public DoubleStream doubles(long streamSize) {
815     if (streamSize < 0L)
816     throw new IllegalArgumentException("negative Stream size");
817     return StreamSupport.doubleStream
818     (new RandomDoublesSpliterator
819     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
820     false);
821     }
822    
823     /**
824     * Returns an effectively unlimited stream of pseudorandom {@code
825 dl 1.7 * double} values, each between zero (inclusive) and one
826     * (exclusive).
827 dl 1.1 *
828     * @implNote This method is implemented to be equivalent to {@code
829     * doubles(Long.MAX_VALUE)}.
830     *
831     * @return a stream of pseudorandom {@code double} values
832     */
833     public DoubleStream doubles() {
834     return StreamSupport.doubleStream
835     (new RandomDoublesSpliterator
836     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
837     false);
838     }
839    
840     /**
841 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
842 dl 1.1 * pseudorandom {@code double} values, each conforming to the
843     * given origin and bound.
844     *
845     * @param streamSize the number of values to generate
846     * @param randomNumberOrigin the origin of each random value
847     * @param randomNumberBound the bound of each random value
848     * @return a stream of pseudorandom {@code double} values,
849 jsr166 1.10 * each with the given origin and bound
850 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
851 jsr166 1.10 * less than zero
852 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
853     * is greater than or equal to {@code randomNumberBound}
854     */
855     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
856     double randomNumberBound) {
857     if (streamSize < 0L)
858     throw new IllegalArgumentException("negative Stream size");
859 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
860 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
861     return StreamSupport.doubleStream
862     (new RandomDoublesSpliterator
863     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
864     false);
865     }
866    
867     /**
868     * Returns an effectively unlimited stream of pseudorandom {@code
869     * double} values, each conforming to the given origin and bound.
870     *
871     * @implNote This method is implemented to be equivalent to {@code
872     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
873     *
874     * @param randomNumberOrigin the origin of each random value
875     * @param randomNumberBound the bound of each random value
876     * @return a stream of pseudorandom {@code double} values,
877 jsr166 1.10 * each with the given origin and bound
878 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
879     * is greater than or equal to {@code randomNumberBound}
880     */
881     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
882 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
883 dl 1.1 throw new IllegalArgumentException("bound must be greater than origin");
884     return StreamSupport.doubleStream
885     (new RandomDoublesSpliterator
886     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
887     false);
888     }
889    
890     /**
891     * Spliterator for int streams. We multiplex the four int
892 dl 1.7 * versions into one class by treating a bound less than origin as
893 dl 1.1 * unbounded, and also by treating "infinite" as equivalent to
894     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
895     * approach. The long and double versions of this class are
896     * identical except for types.
897     */
898 dl 1.11 static final class RandomIntsSpliterator implements Spliterator.OfInt {
899 dl 1.1 final SplittableRandom rng;
900     long index;
901     final long fence;
902     final int origin;
903     final int bound;
904     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
905     int origin, int bound) {
906     this.rng = rng; this.index = index; this.fence = fence;
907     this.origin = origin; this.bound = bound;
908     }
909    
910     public RandomIntsSpliterator trySplit() {
911     long i = index, m = (i + fence) >>> 1;
912     return (m <= i) ? null :
913     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
914     }
915    
916     public long estimateSize() {
917     return fence - index;
918     }
919    
920     public int characteristics() {
921     return (Spliterator.SIZED | Spliterator.SUBSIZED |
922 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
923 dl 1.1 }
924    
925     public boolean tryAdvance(IntConsumer consumer) {
926     if (consumer == null) throw new NullPointerException();
927     long i = index, f = fence;
928     if (i < f) {
929     consumer.accept(rng.internalNextInt(origin, bound));
930     index = i + 1;
931     return true;
932     }
933     return false;
934     }
935    
936     public void forEachRemaining(IntConsumer consumer) {
937     if (consumer == null) throw new NullPointerException();
938     long i = index, f = fence;
939     if (i < f) {
940     index = f;
941     int o = origin, b = bound;
942     do {
943     consumer.accept(rng.internalNextInt(o, b));
944     } while (++i < f);
945     }
946     }
947     }
948    
949     /**
950     * Spliterator for long streams.
951     */
952 dl 1.11 static final class RandomLongsSpliterator implements Spliterator.OfLong {
953 dl 1.1 final SplittableRandom rng;
954     long index;
955     final long fence;
956     final long origin;
957     final long bound;
958     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
959     long origin, long bound) {
960     this.rng = rng; this.index = index; this.fence = fence;
961     this.origin = origin; this.bound = bound;
962     }
963    
964     public RandomLongsSpliterator trySplit() {
965     long i = index, m = (i + fence) >>> 1;
966     return (m <= i) ? null :
967     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
968     }
969    
970     public long estimateSize() {
971     return fence - index;
972     }
973    
974     public int characteristics() {
975     return (Spliterator.SIZED | Spliterator.SUBSIZED |
976 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
977 dl 1.1 }
978    
979     public boolean tryAdvance(LongConsumer consumer) {
980     if (consumer == null) throw new NullPointerException();
981     long i = index, f = fence;
982     if (i < f) {
983     consumer.accept(rng.internalNextLong(origin, bound));
984     index = i + 1;
985     return true;
986     }
987     return false;
988     }
989    
990     public void forEachRemaining(LongConsumer consumer) {
991     if (consumer == null) throw new NullPointerException();
992     long i = index, f = fence;
993     if (i < f) {
994     index = f;
995     long o = origin, b = bound;
996     do {
997     consumer.accept(rng.internalNextLong(o, b));
998     } while (++i < f);
999     }
1000     }
1001    
1002     }
1003    
1004     /**
1005     * Spliterator for double streams.
1006     */
1007 dl 1.11 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
1008 dl 1.1 final SplittableRandom rng;
1009     long index;
1010     final long fence;
1011     final double origin;
1012     final double bound;
1013     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
1014     double origin, double bound) {
1015     this.rng = rng; this.index = index; this.fence = fence;
1016     this.origin = origin; this.bound = bound;
1017     }
1018    
1019     public RandomDoublesSpliterator trySplit() {
1020     long i = index, m = (i + fence) >>> 1;
1021     return (m <= i) ? null :
1022     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
1023     }
1024    
1025     public long estimateSize() {
1026     return fence - index;
1027     }
1028    
1029     public int characteristics() {
1030     return (Spliterator.SIZED | Spliterator.SUBSIZED |
1031 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
1032 dl 1.1 }
1033    
1034     public boolean tryAdvance(DoubleConsumer consumer) {
1035     if (consumer == null) throw new NullPointerException();
1036     long i = index, f = fence;
1037     if (i < f) {
1038     consumer.accept(rng.internalNextDouble(origin, bound));
1039     index = i + 1;
1040     return true;
1041     }
1042     return false;
1043     }
1044    
1045     public void forEachRemaining(DoubleConsumer consumer) {
1046     if (consumer == null) throw new NullPointerException();
1047     long i = index, f = fence;
1048     if (i < f) {
1049     index = f;
1050     double o = origin, b = bound;
1051     do {
1052     consumer.accept(rng.internalNextDouble(o, b));
1053     } while (++i < f);
1054     }
1055     }
1056     }
1057    
1058     }