ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.18
Committed: Thu Aug 22 23:36:06 2013 UTC (10 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.17: +75 -55 lines
Log Message:
Optional SecureRandom initial seed

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28 dl 1.18 import java.security.SecureRandom;
29 dl 1.15 import java.net.InetAddress;
30 dl 1.1 import java.util.concurrent.atomic.AtomicLong;
31     import java.util.function.IntConsumer;
32     import java.util.function.LongConsumer;
33     import java.util.function.DoubleConsumer;
34     import java.util.stream.StreamSupport;
35     import java.util.stream.IntStream;
36     import java.util.stream.LongStream;
37     import java.util.stream.DoubleStream;
38    
39     /**
40     * A generator of uniform pseudorandom values applicable for use in
41     * (among other contexts) isolated parallel computations that may
42 dl 1.18 * generate subtasks. Class {@code SplittableRandom} supports methods for
43 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
44 dl 1.1 * and {@code double} with similar usages as for class
45 jsr166 1.9 * {@link java.util.Random} but differs in the following ways:
46     *
47     * <ul>
48 dl 1.1 *
49     * <li>Series of generated values pass the DieHarder suite testing
50     * independence and uniformity properties of random number generators.
51     * (Most recently validated with <a
52     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
53     * 3.31.1</a>.) These tests validate only the methods for certain
54     * types and ranges, but similar properties are expected to hold, at
55 dl 1.11 * least approximately, for others as well. The <em>period</em>
56     * (length of any series of generated values before it repeats) is at
57     * least 2<sup>64</sup>. </li>
58 dl 1.1 *
59     * <li> Method {@link #split} constructs and returns a new
60     * SplittableRandom instance that shares no mutable state with the
61 dl 1.7 * current instance. However, with very high probability, the
62     * values collectively generated by the two objects have the same
63 dl 1.1 * statistical properties as if the same quantity of values were
64     * generated by a single thread using a single {@code
65     * SplittableRandom} object. </li>
66     *
67     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
68     * They are designed to be split, not shared, across threads. For
69     * example, a {@link java.util.concurrent.ForkJoinTask
70     * fork/join-style} computation using random numbers might include a
71     * construction of the form {@code new
72     * Subtask(aSplittableRandom.split()).fork()}.
73     *
74     * <li>This class provides additional methods for generating random
75     * streams, that employ the above techniques when used in {@code
76     * stream.parallel()} mode.</li>
77     *
78     * </ul>
79     *
80 dl 1.18 * <p>Instances of {@code SplittableRandom} are not cryptographically
81     * secure. Consider instead using {@link java.security.SecureRandom}
82     * in security-sensitive applications. Additionally,
83     * default-constructed instances do not use a cryptographically random
84     * seed unless the {@linkplain System#getProperty system property}
85     * {@code java.util.secureRandomSeed} is set to {@code true}.
86    
87     *
88 dl 1.1 * @author Guy Steele
89 dl 1.2 * @author Doug Lea
90 dl 1.1 * @since 1.8
91     */
92     public class SplittableRandom {
93    
94     /*
95     * Implementation Overview.
96     *
97     * This algorithm was inspired by the "DotMix" algorithm by
98     * Leiserson, Schardl, and Sukha "Deterministic Parallel
99     * Random-Number Generation for Dynamic-Multithreading Platforms",
100 dl 1.15 * PPoPP 2012, as well as those in "Parallel random numbers: as
101     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
102     * differs mainly in simplifying and cheapening operations.
103     *
104     * The primary update step (method nextSeed()) is to add a
105     * constant ("gamma") to the current (64 bit) seed, forming a
106     * simple sequence. The seed and the gamma values for any two
107     * SplittableRandom instances are highly likely to be different.
108     *
109     * Methods nextLong, nextInt, and derivatives do not return the
110     * sequence (seed) values, but instead a hash-like bit-mix of
111     * their bits, producing more independently distributed sequences.
112     * For nextLong, the mix64 bit-mixing function computes the same
113     * value as the "64-bit finalizer" function in Austin Appleby's
114     * MurmurHash3 algorithm. See
115 dl 1.1 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
116     * comments: "The constants for the finalizers were generated by a
117     * simple simulated-annealing algorithm, and both avalanche all
118 dl 1.15 * bits of 'h' to within 0.25% bias." The mix32 function is
119     * equivalent to (int)(mix64(seed) >>> 32), but faster because it
120     * omits a step that doesn't contribute to result.
121     *
122     * The split operation uses the current generator to form the seed
123     * and gamma for another SplittableRandom. To conservatively
124     * avoid potential correlations between seed and value generation,
125     * gamma selection (method nextGamma) uses the "Mix13" constants
126     * for MurmurHash3 described by David Stafford
127     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
128     * To avoid potential weaknesses in bit-mixing transformations, we
129     * restrict gammas to odd values with at least 12 and no more than
130     * 52 bits set. Rather than rejecting candidates with too few or
131     * too many bits set, method nextGamma flips some bits (which has
132     * the effect of mapping at most 4 to any given gamma value).
133     * This reduces the effective set of 64bit odd gamma values by
134     * about 2<sup>14</sup>, a very tiny percentage, and serves as an
135     * automated screening for sequence constant selection that is
136     * left as an empirical decision in some other hashing and crypto
137     * algorithms.
138     *
139     * The resulting generator thus transforms a sequence in which
140     * (typically) many bits change on each step, with an inexpensive
141     * mixer with good (but less than cryptographically secure)
142     * avalanching.
143     *
144     * The default (no-argument) constructor, in essence, invokes
145     * split() for a common "seeder" SplittableRandom. Unlike other
146     * cases, this split must be performed in a thread-safe manner, so
147     * we use an AtomicLong to represent the seed rather than use an
148     * explicit SplittableRandom. To bootstrap the seeder, we start
149 dl 1.18 * off using a seed based on current time and host unless the
150     * SecureRandomSeed property is set. This serves as a
151     * slimmed-down (and insecure) variant of SecureRandom that also
152 dl 1.15 * avoids stalls that may occur when using /dev/random.
153     *
154     * It is a relatively simple matter to apply the basic design here
155     * to use 128 bit seeds. However, emulating 128bit arithmetic and
156     * carrying around twice the state add more overhead than appears
157     * warranted for current usages.
158 dl 1.13 *
159 dl 1.15 * File organization: First the non-public methods that constitute
160     * the main algorithm, then the main public methods, followed by
161     * some custom spliterator classes needed for stream methods.
162 dl 1.1 */
163    
164     /**
165 dl 1.15 * The initial gamma value for (unsplit) SplittableRandoms. Must
166     * be odd with at least 12 and no more than 52 bits set. Currently
167     * set to the golden ratio scaled to 64bits.
168 dl 1.1 */
169 dl 1.15 private static final long INITIAL_GAMMA = 0x9e3779b97f4a7c15L;
170 dl 1.11
171     /**
172 dl 1.5 * The least non-zero value returned by nextDouble(). This value
173 dl 1.7 * is scaled by a random value of 53 bits to produce a result.
174 dl 1.5 */
175     private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
176    
177     /**
178 dl 1.15 * The seed. Updated only via method nextSeed.
179 dl 1.1 */
180     private long seed;
181    
182     /**
183 dl 1.15 * The step value.
184 dl 1.1 */
185     private final long gamma;
186    
187     /**
188 dl 1.15 * Internal constructor used by all others except default constructor.
189 dl 1.1 */
190 dl 1.15 private SplittableRandom(long seed, long gamma) {
191     this.seed = seed;
192     this.gamma = gamma;
193 dl 1.1 }
194    
195     /**
196 dl 1.15 * Computes MurmurHash3 64bit mix function.
197 dl 1.1 */
198     private static long mix64(long z) {
199 dl 1.15 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
200     z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
201     return z ^ (z >>> 33);
202 dl 1.1 }
203    
204     /**
205 dl 1.15 * Returns the 32 high bits of mix64(z) as int.
206 dl 1.1 */
207     private static int mix32(long z) {
208 dl 1.15 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
209     return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
210 dl 1.1 }
211    
212     /**
213 dl 1.15 * Returns the gamma value to use for a new split instance.
214 dl 1.13 */
215 dl 1.15 private static long nextGamma(long z) {
216     z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L; // Stafford "Mix13"
217 dl 1.14 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
218 dl 1.15 z = (z ^ (z >>> 31)) | 1L; // force to be odd
219     int n = Long.bitCount(z); // ensure enough 0 and 1 bits
220     return (n < 12 || n > 52) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
221 dl 1.13 }
222    
223     /**
224 dl 1.15 * Adds gamma to seed.
225 dl 1.7 */
226 dl 1.15 private long nextSeed() {
227     return seed += gamma;
228 dl 1.7 }
229    
230     /**
231 dl 1.15 * The seed generator for default constructors.
232 dl 1.7 */
233 dl 1.18 private static final AtomicLong seeder = new AtomicLong(initialSeed());
234 dl 1.7
235 dl 1.18 private static long initialSeed() {
236     try { // ignore exceptions in accessing/parsing properties
237     String pp = System.getProperty
238     ("java.util.secureRandomSeed");
239     if (pp != null && pp.equalsIgnoreCase("true")) {
240     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
241     long s = (long)(seedBytes[0]) & 0xffL;
242     for (int i = 1; i < 8; ++i)
243     s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
244     return s;
245     }
246     } catch (Exception ignore) {
247     }
248     int hh = 0; // hashed host address
249 jsr166 1.17 try {
250 dl 1.18 hh = InetAddress.getLocalHost().hashCode();
251     } catch (Exception ignore) {
252 jsr166 1.17 }
253 dl 1.18 return (mix64((((long)hh) << 32) ^ System.currentTimeMillis()) ^
254     mix64(System.nanoTime()));
255 dl 1.1 }
256    
257 dl 1.15 // IllegalArgumentException messages
258     static final String BadBound = "bound must be positive";
259     static final String BadRange = "bound must be greater than origin";
260     static final String BadSize = "size must be non-negative";
261 dl 1.12
262 dl 1.1 /*
263     * Internal versions of nextX methods used by streams, as well as
264     * the public nextX(origin, bound) methods. These exist mainly to
265     * avoid the need for multiple versions of stream spliterators
266     * across the different exported forms of streams.
267     */
268    
269     /**
270     * The form of nextLong used by LongStream Spliterators. If
271     * origin is greater than bound, acts as unbounded form of
272     * nextLong, else as bounded form.
273     *
274     * @param origin the least value, unless greater than bound
275     * @param bound the upper bound (exclusive), must not equal origin
276     * @return a pseudorandom value
277     */
278     final long internalNextLong(long origin, long bound) {
279     /*
280     * Four Cases:
281     *
282     * 1. If the arguments indicate unbounded form, act as
283     * nextLong().
284     *
285     * 2. If the range is an exact power of two, apply the
286     * associated bit mask.
287     *
288     * 3. If the range is positive, loop to avoid potential bias
289     * when the implicit nextLong() bound (2<sup>64</sup>) is not
290     * evenly divisible by the range. The loop rejects candidates
291     * computed from otherwise over-represented values. The
292     * expected number of iterations under an ideal generator
293 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
294     * takes an unlovable form. Because the first candidate is
295     * already available, we need a break-in-the-middle
296     * construction, which is concisely but cryptically performed
297     * within the while-condition of a body-less for loop.
298 dl 1.1 *
299     * 4. Otherwise, the range cannot be represented as a positive
300 dl 1.4 * long. The loop repeatedly generates unbounded longs until
301     * obtaining a candidate meeting constraints (with an expected
302     * number of iterations of less than two).
303 dl 1.1 */
304    
305     long r = mix64(nextSeed());
306     if (origin < bound) {
307     long n = bound - origin, m = n - 1;
308 dl 1.7 if ((n & m) == 0L) // power of two
309 dl 1.1 r = (r & m) + origin;
310 dl 1.7 else if (n > 0L) { // reject over-represented candidates
311 dl 1.1 for (long u = r >>> 1; // ensure nonnegative
312 dl 1.7 u + m - (r = u % n) < 0L; // rejection check
313 dl 1.1 u = mix64(nextSeed()) >>> 1) // retry
314     ;
315     r += origin;
316     }
317 dl 1.7 else { // range not representable as long
318 dl 1.1 while (r < origin || r >= bound)
319     r = mix64(nextSeed());
320     }
321     }
322     return r;
323     }
324    
325     /**
326     * The form of nextInt used by IntStream Spliterators.
327     * Exactly the same as long version, except for types.
328     *
329     * @param origin the least value, unless greater than bound
330     * @param bound the upper bound (exclusive), must not equal origin
331     * @return a pseudorandom value
332     */
333     final int internalNextInt(int origin, int bound) {
334     int r = mix32(nextSeed());
335     if (origin < bound) {
336     int n = bound - origin, m = n - 1;
337 dl 1.13 if ((n & m) == 0)
338 dl 1.1 r = (r & m) + origin;
339     else if (n > 0) {
340     for (int u = r >>> 1;
341 dl 1.7 u + m - (r = u % n) < 0;
342 dl 1.1 u = mix32(nextSeed()) >>> 1)
343     ;
344     r += origin;
345     }
346     else {
347     while (r < origin || r >= bound)
348     r = mix32(nextSeed());
349     }
350     }
351     return r;
352     }
353    
354     /**
355     * The form of nextDouble used by DoubleStream Spliterators.
356     *
357     * @param origin the least value, unless greater than bound
358     * @param bound the upper bound (exclusive), must not equal origin
359     * @return a pseudorandom value
360     */
361     final double internalNextDouble(double origin, double bound) {
362 dl 1.5 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
363 dl 1.1 if (origin < bound) {
364     r = r * (bound - origin) + origin;
365 dl 1.7 if (r >= bound) // correct for rounding
366 dl 1.1 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
367     }
368     return r;
369     }
370    
371     /* ---------------- public methods ---------------- */
372    
373     /**
374 dl 1.7 * Creates a new SplittableRandom instance using the specified
375     * initial seed. SplittableRandom instances created with the same
376 dl 1.11 * seed in the same program generate identical sequences of values.
377 dl 1.1 *
378     * @param seed the initial seed
379     */
380     public SplittableRandom(long seed) {
381 dl 1.15 this(seed, INITIAL_GAMMA);
382 dl 1.1 }
383    
384     /**
385     * Creates a new SplittableRandom instance that is likely to
386     * generate sequences of values that are statistically independent
387     * of those of any other instances in the current program; and
388     * may, and typically does, vary across program invocations.
389     */
390 dl 1.15 public SplittableRandom() { // emulate seeder.split()
391     this.gamma = nextGamma(this.seed = seeder.addAndGet(INITIAL_GAMMA));
392 dl 1.1 }
393    
394     /**
395     * Constructs and returns a new SplittableRandom instance that
396     * shares no mutable state with this instance. However, with very
397     * high probability, the set of values collectively generated by
398     * the two objects has the same statistical properties as if the
399     * same quantity of values were generated by a single thread using
400     * a single SplittableRandom object. Either or both of the two
401     * objects may be further split using the {@code split()} method,
402     * and the same expected statistical properties apply to the
403     * entire set of generators constructed by such recursive
404     * splitting.
405     *
406     * @return the new SplittableRandom instance
407     */
408     public SplittableRandom split() {
409 dl 1.15 long s = nextSeed();
410     return new SplittableRandom(s, nextGamma(s));
411 dl 1.1 }
412    
413     /**
414     * Returns a pseudorandom {@code int} value.
415     *
416 dl 1.7 * @return a pseudorandom {@code int} value
417 dl 1.1 */
418     public int nextInt() {
419     return mix32(nextSeed());
420     }
421    
422     /**
423 dl 1.7 * Returns a pseudorandom {@code int} value between zero (inclusive)
424 dl 1.1 * and the specified bound (exclusive).
425     *
426 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
427 dl 1.7 * @return a pseudorandom {@code int} value between zero
428 jsr166 1.10 * (inclusive) and the bound (exclusive)
429 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
430 dl 1.1 */
431     public int nextInt(int bound) {
432     if (bound <= 0)
433 dl 1.15 throw new IllegalArgumentException(BadBound);
434 dl 1.1 // Specialize internalNextInt for origin 0
435     int r = mix32(nextSeed());
436     int m = bound - 1;
437 dl 1.13 if ((bound & m) == 0) // power of two
438 dl 1.1 r &= m;
439     else { // reject over-represented candidates
440     for (int u = r >>> 1;
441 dl 1.7 u + m - (r = u % bound) < 0;
442 dl 1.1 u = mix32(nextSeed()) >>> 1)
443     ;
444     }
445     return r;
446     }
447    
448     /**
449     * Returns a pseudorandom {@code int} value between the specified
450     * origin (inclusive) and the specified bound (exclusive).
451     *
452     * @param origin the least value returned
453     * @param bound the upper bound (exclusive)
454     * @return a pseudorandom {@code int} value between the origin
455 jsr166 1.10 * (inclusive) and the bound (exclusive)
456 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
457 dl 1.1 * or equal to {@code bound}
458     */
459     public int nextInt(int origin, int bound) {
460     if (origin >= bound)
461 dl 1.15 throw new IllegalArgumentException(BadRange);
462 dl 1.1 return internalNextInt(origin, bound);
463     }
464    
465     /**
466     * Returns a pseudorandom {@code long} value.
467     *
468 dl 1.7 * @return a pseudorandom {@code long} value
469 dl 1.1 */
470     public long nextLong() {
471     return mix64(nextSeed());
472     }
473    
474     /**
475 dl 1.7 * Returns a pseudorandom {@code long} value between zero (inclusive)
476 dl 1.1 * and the specified bound (exclusive).
477     *
478 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
479 dl 1.7 * @return a pseudorandom {@code long} value between zero
480 jsr166 1.10 * (inclusive) and the bound (exclusive)
481 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
482 dl 1.1 */
483     public long nextLong(long bound) {
484     if (bound <= 0)
485 dl 1.15 throw new IllegalArgumentException(BadBound);
486 dl 1.1 // Specialize internalNextLong for origin 0
487     long r = mix64(nextSeed());
488     long m = bound - 1;
489     if ((bound & m) == 0L) // power of two
490     r &= m;
491     else { // reject over-represented candidates
492     for (long u = r >>> 1;
493     u + m - (r = u % bound) < 0L;
494     u = mix64(nextSeed()) >>> 1)
495     ;
496     }
497     return r;
498     }
499    
500     /**
501     * Returns a pseudorandom {@code long} value between the specified
502     * origin (inclusive) and the specified bound (exclusive).
503     *
504     * @param origin the least value returned
505     * @param bound the upper bound (exclusive)
506     * @return a pseudorandom {@code long} value between the origin
507 jsr166 1.10 * (inclusive) and the bound (exclusive)
508 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
509 dl 1.1 * or equal to {@code bound}
510     */
511     public long nextLong(long origin, long bound) {
512     if (origin >= bound)
513 dl 1.15 throw new IllegalArgumentException(BadRange);
514 dl 1.1 return internalNextLong(origin, bound);
515     }
516    
517     /**
518 dl 1.7 * Returns a pseudorandom {@code double} value between zero
519     * (inclusive) and one (exclusive).
520 dl 1.1 *
521 dl 1.7 * @return a pseudorandom {@code double} value between zero
522 dl 1.18 * (inclusive) and one (exclusive)
523 dl 1.1 */
524     public double nextDouble() {
525 dl 1.11 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
526 dl 1.1 }
527    
528     /**
529     * Returns a pseudorandom {@code double} value between 0.0
530     * (inclusive) and the specified bound (exclusive).
531     *
532 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
533 dl 1.7 * @return a pseudorandom {@code double} value between zero
534 jsr166 1.10 * (inclusive) and the bound (exclusive)
535 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
536 dl 1.1 */
537     public double nextDouble(double bound) {
538 dl 1.7 if (!(bound > 0.0))
539 dl 1.15 throw new IllegalArgumentException(BadBound);
540 dl 1.11 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
541 dl 1.1 return (result < bound) ? result : // correct for rounding
542     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
543     }
544    
545     /**
546 dl 1.7 * Returns a pseudorandom {@code double} value between the specified
547 dl 1.1 * origin (inclusive) and bound (exclusive).
548     *
549     * @param origin the least value returned
550 dl 1.18 * @param bound the upper bound (exclusive)
551 dl 1.1 * @return a pseudorandom {@code double} value between the origin
552 jsr166 1.10 * (inclusive) and the bound (exclusive)
553 dl 1.1 * @throws IllegalArgumentException if {@code origin} is greater than
554     * or equal to {@code bound}
555     */
556     public double nextDouble(double origin, double bound) {
557 dl 1.7 if (!(origin < bound))
558 dl 1.15 throw new IllegalArgumentException(BadRange);
559 dl 1.1 return internalNextDouble(origin, bound);
560     }
561    
562 dl 1.11 /**
563     * Returns a pseudorandom {@code boolean} value.
564     *
565     * @return a pseudorandom {@code boolean} value
566     */
567     public boolean nextBoolean() {
568     return mix32(nextSeed()) < 0;
569     }
570    
571 dl 1.1 // stream methods, coded in a way intended to better isolate for
572     // maintenance purposes the small differences across forms.
573    
574     /**
575 dl 1.16 * Returns a stream producing the given {@code streamSize} number
576     * of pseudorandom {@code int} values from this generator and/or
577     * one split from it.
578 dl 1.1 *
579     * @param streamSize the number of values to generate
580     * @return a stream of pseudorandom {@code int} values
581     * @throws IllegalArgumentException if {@code streamSize} is
582 dl 1.7 * less than zero
583 dl 1.1 */
584     public IntStream ints(long streamSize) {
585     if (streamSize < 0L)
586 dl 1.15 throw new IllegalArgumentException(BadSize);
587 dl 1.1 return StreamSupport.intStream
588     (new RandomIntsSpliterator
589     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
590     false);
591     }
592    
593     /**
594     * Returns an effectively unlimited stream of pseudorandom {@code int}
595 dl 1.16 * values from this generator and/or one split from it.
596 dl 1.1 *
597     * @implNote This method is implemented to be equivalent to {@code
598     * ints(Long.MAX_VALUE)}.
599     *
600     * @return a stream of pseudorandom {@code int} values
601     */
602     public IntStream ints() {
603     return StreamSupport.intStream
604     (new RandomIntsSpliterator
605     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
606     false);
607     }
608    
609     /**
610 dl 1.16 * Returns a stream producing the given {@code streamSize} number
611 dl 1.18 * of pseudorandom {@code int} values from this generator and/or one split
612     * from it; each value conforms to the given origin (inclusive) and bound
613     * (exclusive).
614 dl 1.1 *
615     * @param streamSize the number of values to generate
616 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
617     * @param randomNumberBound the bound (exclusive) of each random value
618 dl 1.1 * @return a stream of pseudorandom {@code int} values,
619 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
620 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
621 dl 1.7 * less than zero, or {@code randomNumberOrigin}
622 dl 1.1 * is greater than or equal to {@code randomNumberBound}
623     */
624     public IntStream ints(long streamSize, int randomNumberOrigin,
625     int randomNumberBound) {
626     if (streamSize < 0L)
627 dl 1.15 throw new IllegalArgumentException(BadSize);
628 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
629 dl 1.15 throw new IllegalArgumentException(BadRange);
630 dl 1.1 return StreamSupport.intStream
631     (new RandomIntsSpliterator
632     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
633     false);
634     }
635    
636     /**
637     * Returns an effectively unlimited stream of pseudorandom {@code
638 dl 1.18 * int} values from this generator and/or one split from it; each value
639     * conforms to the given origin (inclusive) and bound (exclusive).
640 dl 1.1 *
641     * @implNote This method is implemented to be equivalent to {@code
642     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
643     *
644 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
645     * @param randomNumberBound the bound (exclusive) of each random value
646 dl 1.1 * @return a stream of pseudorandom {@code int} values,
647 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
648 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
649     * is greater than or equal to {@code randomNumberBound}
650     */
651     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
652     if (randomNumberOrigin >= randomNumberBound)
653 dl 1.15 throw new IllegalArgumentException(BadRange);
654 dl 1.1 return StreamSupport.intStream
655     (new RandomIntsSpliterator
656     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
657     false);
658     }
659    
660     /**
661 dl 1.16 * Returns a stream producing the given {@code streamSize} number
662     * of pseudorandom {@code long} values from this generator and/or
663     * one split from it.
664 dl 1.1 *
665     * @param streamSize the number of values to generate
666 dl 1.7 * @return a stream of pseudorandom {@code long} values
667 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
668 dl 1.7 * less than zero
669 dl 1.1 */
670     public LongStream longs(long streamSize) {
671     if (streamSize < 0L)
672 dl 1.15 throw new IllegalArgumentException(BadSize);
673 dl 1.1 return StreamSupport.longStream
674     (new RandomLongsSpliterator
675     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
676     false);
677     }
678    
679     /**
680 dl 1.16 * Returns an effectively unlimited stream of pseudorandom {@code
681     * long} values from this generator and/or one split from it.
682 dl 1.1 *
683     * @implNote This method is implemented to be equivalent to {@code
684     * longs(Long.MAX_VALUE)}.
685     *
686     * @return a stream of pseudorandom {@code long} values
687     */
688     public LongStream longs() {
689     return StreamSupport.longStream
690     (new RandomLongsSpliterator
691     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
692     false);
693     }
694    
695     /**
696 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
697 dl 1.18 * pseudorandom {@code long} values from this generator and/or one split
698     * from it; each value conforms to the given origin (inclusive) and bound
699     * (exclusive).
700 dl 1.1 *
701     * @param streamSize the number of values to generate
702 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
703     * @param randomNumberBound the bound (exclusive) of each random value
704 dl 1.1 * @return a stream of pseudorandom {@code long} values,
705 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
706 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
707 dl 1.7 * less than zero, or {@code randomNumberOrigin}
708 dl 1.1 * is greater than or equal to {@code randomNumberBound}
709     */
710     public LongStream longs(long streamSize, long randomNumberOrigin,
711     long randomNumberBound) {
712     if (streamSize < 0L)
713 dl 1.15 throw new IllegalArgumentException(BadSize);
714 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
715 dl 1.15 throw new IllegalArgumentException(BadRange);
716 dl 1.1 return StreamSupport.longStream
717     (new RandomLongsSpliterator
718     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
719     false);
720     }
721    
722     /**
723     * Returns an effectively unlimited stream of pseudorandom {@code
724 dl 1.18 * long} values from this generator and/or one split from it; each value
725     * conforms to the given origin (inclusive) and bound (exclusive).
726 dl 1.1 *
727     * @implNote This method is implemented to be equivalent to {@code
728     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
729     *
730 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
731     * @param randomNumberBound the bound (exclusive) of each random value
732 dl 1.1 * @return a stream of pseudorandom {@code long} values,
733 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
734 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
735     * is greater than or equal to {@code randomNumberBound}
736     */
737     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
738     if (randomNumberOrigin >= randomNumberBound)
739 dl 1.15 throw new IllegalArgumentException(BadRange);
740 dl 1.1 return StreamSupport.longStream
741     (new RandomLongsSpliterator
742     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
743     false);
744     }
745    
746     /**
747 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
748 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
749     * from it; each value is between zero (inclusive) and one (exclusive).
750 dl 1.1 *
751     * @param streamSize the number of values to generate
752     * @return a stream of {@code double} values
753     * @throws IllegalArgumentException if {@code streamSize} is
754 dl 1.7 * less than zero
755 dl 1.1 */
756     public DoubleStream doubles(long streamSize) {
757     if (streamSize < 0L)
758 dl 1.15 throw new IllegalArgumentException(BadSize);
759 dl 1.1 return StreamSupport.doubleStream
760     (new RandomDoublesSpliterator
761     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
762     false);
763     }
764    
765     /**
766     * Returns an effectively unlimited stream of pseudorandom {@code
767 dl 1.18 * double} values from this generator and/or one split from it; each value
768     * is between zero (inclusive) and one (exclusive).
769 dl 1.1 *
770     * @implNote This method is implemented to be equivalent to {@code
771     * doubles(Long.MAX_VALUE)}.
772     *
773     * @return a stream of pseudorandom {@code double} values
774     */
775     public DoubleStream doubles() {
776     return StreamSupport.doubleStream
777     (new RandomDoublesSpliterator
778     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
779     false);
780     }
781    
782     /**
783 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
784 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
785     * from it; each value conforms to the given origin (inclusive) and bound
786     * (exclusive).
787 dl 1.1 *
788     * @param streamSize the number of values to generate
789 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
790     * @param randomNumberBound the bound (exclusive) of each random value
791 dl 1.1 * @return a stream of pseudorandom {@code double} values,
792 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
793 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
794 dl 1.18 * less than zero
795 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
796     * is greater than or equal to {@code randomNumberBound}
797     */
798     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
799     double randomNumberBound) {
800     if (streamSize < 0L)
801 dl 1.15 throw new IllegalArgumentException(BadSize);
802 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
803 dl 1.15 throw new IllegalArgumentException(BadRange);
804 dl 1.1 return StreamSupport.doubleStream
805     (new RandomDoublesSpliterator
806     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
807     false);
808     }
809    
810     /**
811     * Returns an effectively unlimited stream of pseudorandom {@code
812 dl 1.18 * double} values from this generator and/or one split from it; each value
813     * conforms to the given origin (inclusive) and bound (exclusive).
814 dl 1.1 *
815     * @implNote This method is implemented to be equivalent to {@code
816     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
817     *
818 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
819     * @param randomNumberBound the bound (exclusive) of each random value
820 dl 1.1 * @return a stream of pseudorandom {@code double} values,
821 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
822 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
823     * is greater than or equal to {@code randomNumberBound}
824     */
825     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
826 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
827 dl 1.15 throw new IllegalArgumentException(BadRange);
828 dl 1.1 return StreamSupport.doubleStream
829     (new RandomDoublesSpliterator
830     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
831     false);
832     }
833    
834     /**
835     * Spliterator for int streams. We multiplex the four int
836 dl 1.7 * versions into one class by treating a bound less than origin as
837 dl 1.1 * unbounded, and also by treating "infinite" as equivalent to
838     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
839     * approach. The long and double versions of this class are
840     * identical except for types.
841     */
842 dl 1.11 static final class RandomIntsSpliterator implements Spliterator.OfInt {
843 dl 1.1 final SplittableRandom rng;
844     long index;
845     final long fence;
846     final int origin;
847     final int bound;
848     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
849     int origin, int bound) {
850     this.rng = rng; this.index = index; this.fence = fence;
851     this.origin = origin; this.bound = bound;
852     }
853    
854     public RandomIntsSpliterator trySplit() {
855     long i = index, m = (i + fence) >>> 1;
856     return (m <= i) ? null :
857     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
858     }
859    
860     public long estimateSize() {
861     return fence - index;
862     }
863    
864     public int characteristics() {
865     return (Spliterator.SIZED | Spliterator.SUBSIZED |
866 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
867 dl 1.1 }
868    
869     public boolean tryAdvance(IntConsumer consumer) {
870     if (consumer == null) throw new NullPointerException();
871     long i = index, f = fence;
872     if (i < f) {
873     consumer.accept(rng.internalNextInt(origin, bound));
874     index = i + 1;
875     return true;
876     }
877     return false;
878     }
879    
880     public void forEachRemaining(IntConsumer consumer) {
881     if (consumer == null) throw new NullPointerException();
882     long i = index, f = fence;
883     if (i < f) {
884     index = f;
885 dl 1.15 SplittableRandom r = rng;
886 dl 1.1 int o = origin, b = bound;
887     do {
888 dl 1.15 consumer.accept(r.internalNextInt(o, b));
889 dl 1.1 } while (++i < f);
890     }
891     }
892     }
893    
894     /**
895     * Spliterator for long streams.
896     */
897 dl 1.11 static final class RandomLongsSpliterator implements Spliterator.OfLong {
898 dl 1.1 final SplittableRandom rng;
899     long index;
900     final long fence;
901     final long origin;
902     final long bound;
903     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
904     long origin, long bound) {
905     this.rng = rng; this.index = index; this.fence = fence;
906     this.origin = origin; this.bound = bound;
907     }
908    
909     public RandomLongsSpliterator trySplit() {
910     long i = index, m = (i + fence) >>> 1;
911     return (m <= i) ? null :
912     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
913     }
914    
915     public long estimateSize() {
916     return fence - index;
917     }
918    
919     public int characteristics() {
920     return (Spliterator.SIZED | Spliterator.SUBSIZED |
921 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
922 dl 1.1 }
923    
924     public boolean tryAdvance(LongConsumer consumer) {
925     if (consumer == null) throw new NullPointerException();
926     long i = index, f = fence;
927     if (i < f) {
928     consumer.accept(rng.internalNextLong(origin, bound));
929     index = i + 1;
930     return true;
931     }
932     return false;
933     }
934    
935     public void forEachRemaining(LongConsumer consumer) {
936     if (consumer == null) throw new NullPointerException();
937     long i = index, f = fence;
938     if (i < f) {
939     index = f;
940 dl 1.15 SplittableRandom r = rng;
941 dl 1.1 long o = origin, b = bound;
942     do {
943 dl 1.15 consumer.accept(r.internalNextLong(o, b));
944 dl 1.1 } while (++i < f);
945     }
946     }
947    
948     }
949    
950     /**
951     * Spliterator for double streams.
952     */
953 dl 1.11 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
954 dl 1.1 final SplittableRandom rng;
955     long index;
956     final long fence;
957     final double origin;
958     final double bound;
959     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
960     double origin, double bound) {
961     this.rng = rng; this.index = index; this.fence = fence;
962     this.origin = origin; this.bound = bound;
963     }
964    
965     public RandomDoublesSpliterator trySplit() {
966     long i = index, m = (i + fence) >>> 1;
967     return (m <= i) ? null :
968     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
969     }
970    
971     public long estimateSize() {
972     return fence - index;
973     }
974    
975     public int characteristics() {
976     return (Spliterator.SIZED | Spliterator.SUBSIZED |
977 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
978 dl 1.1 }
979    
980     public boolean tryAdvance(DoubleConsumer consumer) {
981     if (consumer == null) throw new NullPointerException();
982     long i = index, f = fence;
983     if (i < f) {
984     consumer.accept(rng.internalNextDouble(origin, bound));
985     index = i + 1;
986     return true;
987     }
988     return false;
989     }
990    
991     public void forEachRemaining(DoubleConsumer consumer) {
992     if (consumer == null) throw new NullPointerException();
993     long i = index, f = fence;
994     if (i < f) {
995     index = f;
996 dl 1.15 SplittableRandom r = rng;
997 dl 1.1 double o = origin, b = bound;
998     do {
999 dl 1.15 consumer.accept(r.internalNextDouble(o, b));
1000 dl 1.1 } while (++i < f);
1001     }
1002     }
1003     }
1004    
1005     }