ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.20
Committed: Sat Aug 24 06:20:15 2013 UTC (10 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.19: +1 -1 lines
Log Message:
use actual name of system property in comment

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28 dl 1.18 import java.security.SecureRandom;
29 dl 1.15 import java.net.InetAddress;
30 dl 1.1 import java.util.concurrent.atomic.AtomicLong;
31     import java.util.function.IntConsumer;
32     import java.util.function.LongConsumer;
33     import java.util.function.DoubleConsumer;
34     import java.util.stream.StreamSupport;
35     import java.util.stream.IntStream;
36     import java.util.stream.LongStream;
37     import java.util.stream.DoubleStream;
38    
39     /**
40     * A generator of uniform pseudorandom values applicable for use in
41     * (among other contexts) isolated parallel computations that may
42 dl 1.18 * generate subtasks. Class {@code SplittableRandom} supports methods for
43 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
44 dl 1.1 * and {@code double} with similar usages as for class
45 jsr166 1.9 * {@link java.util.Random} but differs in the following ways:
46     *
47     * <ul>
48 dl 1.1 *
49     * <li>Series of generated values pass the DieHarder suite testing
50     * independence and uniformity properties of random number generators.
51     * (Most recently validated with <a
52     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
53     * 3.31.1</a>.) These tests validate only the methods for certain
54     * types and ranges, but similar properties are expected to hold, at
55 dl 1.11 * least approximately, for others as well. The <em>period</em>
56     * (length of any series of generated values before it repeats) is at
57     * least 2<sup>64</sup>. </li>
58 dl 1.1 *
59     * <li> Method {@link #split} constructs and returns a new
60     * SplittableRandom instance that shares no mutable state with the
61 dl 1.7 * current instance. However, with very high probability, the
62     * values collectively generated by the two objects have the same
63 dl 1.1 * statistical properties as if the same quantity of values were
64     * generated by a single thread using a single {@code
65     * SplittableRandom} object. </li>
66     *
67     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
68     * They are designed to be split, not shared, across threads. For
69     * example, a {@link java.util.concurrent.ForkJoinTask
70     * fork/join-style} computation using random numbers might include a
71     * construction of the form {@code new
72     * Subtask(aSplittableRandom.split()).fork()}.
73     *
74     * <li>This class provides additional methods for generating random
75     * streams, that employ the above techniques when used in {@code
76     * stream.parallel()} mode.</li>
77     *
78     * </ul>
79     *
80 dl 1.18 * <p>Instances of {@code SplittableRandom} are not cryptographically
81     * secure. Consider instead using {@link java.security.SecureRandom}
82     * in security-sensitive applications. Additionally,
83     * default-constructed instances do not use a cryptographically random
84     * seed unless the {@linkplain System#getProperty system property}
85     * {@code java.util.secureRandomSeed} is set to {@code true}.
86     *
87 dl 1.1 * @author Guy Steele
88 dl 1.2 * @author Doug Lea
89 dl 1.1 * @since 1.8
90     */
91     public class SplittableRandom {
92    
93     /*
94     * Implementation Overview.
95     *
96     * This algorithm was inspired by the "DotMix" algorithm by
97     * Leiserson, Schardl, and Sukha "Deterministic Parallel
98     * Random-Number Generation for Dynamic-Multithreading Platforms",
99 dl 1.15 * PPoPP 2012, as well as those in "Parallel random numbers: as
100     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
101     * differs mainly in simplifying and cheapening operations.
102     *
103     * The primary update step (method nextSeed()) is to add a
104     * constant ("gamma") to the current (64 bit) seed, forming a
105     * simple sequence. The seed and the gamma values for any two
106     * SplittableRandom instances are highly likely to be different.
107     *
108     * Methods nextLong, nextInt, and derivatives do not return the
109     * sequence (seed) values, but instead a hash-like bit-mix of
110     * their bits, producing more independently distributed sequences.
111     * For nextLong, the mix64 bit-mixing function computes the same
112     * value as the "64-bit finalizer" function in Austin Appleby's
113     * MurmurHash3 algorithm. See
114 dl 1.1 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
115     * comments: "The constants for the finalizers were generated by a
116     * simple simulated-annealing algorithm, and both avalanche all
117 dl 1.15 * bits of 'h' to within 0.25% bias." The mix32 function is
118     * equivalent to (int)(mix64(seed) >>> 32), but faster because it
119     * omits a step that doesn't contribute to result.
120     *
121     * The split operation uses the current generator to form the seed
122     * and gamma for another SplittableRandom. To conservatively
123     * avoid potential correlations between seed and value generation,
124     * gamma selection (method nextGamma) uses the "Mix13" constants
125     * for MurmurHash3 described by David Stafford
126     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
127     * To avoid potential weaknesses in bit-mixing transformations, we
128     * restrict gammas to odd values with at least 12 and no more than
129     * 52 bits set. Rather than rejecting candidates with too few or
130     * too many bits set, method nextGamma flips some bits (which has
131     * the effect of mapping at most 4 to any given gamma value).
132     * This reduces the effective set of 64bit odd gamma values by
133     * about 2<sup>14</sup>, a very tiny percentage, and serves as an
134     * automated screening for sequence constant selection that is
135     * left as an empirical decision in some other hashing and crypto
136     * algorithms.
137     *
138     * The resulting generator thus transforms a sequence in which
139     * (typically) many bits change on each step, with an inexpensive
140     * mixer with good (but less than cryptographically secure)
141     * avalanching.
142     *
143     * The default (no-argument) constructor, in essence, invokes
144     * split() for a common "seeder" SplittableRandom. Unlike other
145     * cases, this split must be performed in a thread-safe manner, so
146     * we use an AtomicLong to represent the seed rather than use an
147     * explicit SplittableRandom. To bootstrap the seeder, we start
148 dl 1.18 * off using a seed based on current time and host unless the
149 jsr166 1.20 * java.util.secureRandomSeed property is set. This serves as a
150 dl 1.18 * slimmed-down (and insecure) variant of SecureRandom that also
151 dl 1.15 * avoids stalls that may occur when using /dev/random.
152     *
153     * It is a relatively simple matter to apply the basic design here
154     * to use 128 bit seeds. However, emulating 128bit arithmetic and
155     * carrying around twice the state add more overhead than appears
156     * warranted for current usages.
157 dl 1.13 *
158 dl 1.15 * File organization: First the non-public methods that constitute
159     * the main algorithm, then the main public methods, followed by
160     * some custom spliterator classes needed for stream methods.
161 dl 1.1 */
162    
163     /**
164 dl 1.15 * The initial gamma value for (unsplit) SplittableRandoms. Must
165     * be odd with at least 12 and no more than 52 bits set. Currently
166     * set to the golden ratio scaled to 64bits.
167 dl 1.1 */
168 dl 1.15 private static final long INITIAL_GAMMA = 0x9e3779b97f4a7c15L;
169 dl 1.11
170     /**
171 dl 1.5 * The least non-zero value returned by nextDouble(). This value
172 dl 1.7 * is scaled by a random value of 53 bits to produce a result.
173 dl 1.5 */
174     private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
175    
176     /**
177 dl 1.15 * The seed. Updated only via method nextSeed.
178 dl 1.1 */
179     private long seed;
180    
181     /**
182 dl 1.15 * The step value.
183 dl 1.1 */
184     private final long gamma;
185    
186     /**
187 dl 1.15 * Internal constructor used by all others except default constructor.
188 dl 1.1 */
189 dl 1.15 private SplittableRandom(long seed, long gamma) {
190     this.seed = seed;
191     this.gamma = gamma;
192 dl 1.1 }
193    
194     /**
195 dl 1.15 * Computes MurmurHash3 64bit mix function.
196 dl 1.1 */
197     private static long mix64(long z) {
198 dl 1.15 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
199     z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
200     return z ^ (z >>> 33);
201 dl 1.1 }
202    
203     /**
204 dl 1.15 * Returns the 32 high bits of mix64(z) as int.
205 dl 1.1 */
206     private static int mix32(long z) {
207 dl 1.15 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
208     return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
209 dl 1.1 }
210    
211     /**
212 dl 1.15 * Returns the gamma value to use for a new split instance.
213 dl 1.13 */
214 dl 1.15 private static long nextGamma(long z) {
215     z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L; // Stafford "Mix13"
216 dl 1.14 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
217 dl 1.15 z = (z ^ (z >>> 31)) | 1L; // force to be odd
218     int n = Long.bitCount(z); // ensure enough 0 and 1 bits
219     return (n < 12 || n > 52) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
220 dl 1.13 }
221    
222     /**
223 dl 1.15 * Adds gamma to seed.
224 dl 1.7 */
225 dl 1.15 private long nextSeed() {
226     return seed += gamma;
227 dl 1.7 }
228    
229     /**
230 dl 1.15 * The seed generator for default constructors.
231 dl 1.7 */
232 dl 1.18 private static final AtomicLong seeder = new AtomicLong(initialSeed());
233 dl 1.7
234 dl 1.18 private static long initialSeed() {
235     try { // ignore exceptions in accessing/parsing properties
236     String pp = System.getProperty
237     ("java.util.secureRandomSeed");
238     if (pp != null && pp.equalsIgnoreCase("true")) {
239     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
240     long s = (long)(seedBytes[0]) & 0xffL;
241     for (int i = 1; i < 8; ++i)
242     s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
243     return s;
244     }
245     } catch (Exception ignore) {
246     }
247     int hh = 0; // hashed host address
248 jsr166 1.17 try {
249 dl 1.18 hh = InetAddress.getLocalHost().hashCode();
250     } catch (Exception ignore) {
251 jsr166 1.17 }
252 dl 1.18 return (mix64((((long)hh) << 32) ^ System.currentTimeMillis()) ^
253     mix64(System.nanoTime()));
254 dl 1.1 }
255    
256 dl 1.15 // IllegalArgumentException messages
257     static final String BadBound = "bound must be positive";
258     static final String BadRange = "bound must be greater than origin";
259     static final String BadSize = "size must be non-negative";
260 dl 1.12
261 dl 1.1 /*
262     * Internal versions of nextX methods used by streams, as well as
263     * the public nextX(origin, bound) methods. These exist mainly to
264     * avoid the need for multiple versions of stream spliterators
265     * across the different exported forms of streams.
266     */
267    
268     /**
269     * The form of nextLong used by LongStream Spliterators. If
270     * origin is greater than bound, acts as unbounded form of
271     * nextLong, else as bounded form.
272     *
273     * @param origin the least value, unless greater than bound
274     * @param bound the upper bound (exclusive), must not equal origin
275     * @return a pseudorandom value
276     */
277     final long internalNextLong(long origin, long bound) {
278     /*
279     * Four Cases:
280     *
281     * 1. If the arguments indicate unbounded form, act as
282     * nextLong().
283     *
284     * 2. If the range is an exact power of two, apply the
285     * associated bit mask.
286     *
287     * 3. If the range is positive, loop to avoid potential bias
288     * when the implicit nextLong() bound (2<sup>64</sup>) is not
289     * evenly divisible by the range. The loop rejects candidates
290     * computed from otherwise over-represented values. The
291     * expected number of iterations under an ideal generator
292 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
293     * takes an unlovable form. Because the first candidate is
294     * already available, we need a break-in-the-middle
295     * construction, which is concisely but cryptically performed
296     * within the while-condition of a body-less for loop.
297 dl 1.1 *
298     * 4. Otherwise, the range cannot be represented as a positive
299 dl 1.4 * long. The loop repeatedly generates unbounded longs until
300     * obtaining a candidate meeting constraints (with an expected
301     * number of iterations of less than two).
302 dl 1.1 */
303    
304     long r = mix64(nextSeed());
305     if (origin < bound) {
306     long n = bound - origin, m = n - 1;
307 dl 1.7 if ((n & m) == 0L) // power of two
308 dl 1.1 r = (r & m) + origin;
309 dl 1.7 else if (n > 0L) { // reject over-represented candidates
310 dl 1.1 for (long u = r >>> 1; // ensure nonnegative
311 dl 1.7 u + m - (r = u % n) < 0L; // rejection check
312 dl 1.1 u = mix64(nextSeed()) >>> 1) // retry
313     ;
314     r += origin;
315     }
316 dl 1.7 else { // range not representable as long
317 dl 1.1 while (r < origin || r >= bound)
318     r = mix64(nextSeed());
319     }
320     }
321     return r;
322     }
323    
324     /**
325     * The form of nextInt used by IntStream Spliterators.
326     * Exactly the same as long version, except for types.
327     *
328     * @param origin the least value, unless greater than bound
329     * @param bound the upper bound (exclusive), must not equal origin
330     * @return a pseudorandom value
331     */
332     final int internalNextInt(int origin, int bound) {
333     int r = mix32(nextSeed());
334     if (origin < bound) {
335     int n = bound - origin, m = n - 1;
336 dl 1.13 if ((n & m) == 0)
337 dl 1.1 r = (r & m) + origin;
338     else if (n > 0) {
339     for (int u = r >>> 1;
340 dl 1.7 u + m - (r = u % n) < 0;
341 dl 1.1 u = mix32(nextSeed()) >>> 1)
342     ;
343     r += origin;
344     }
345     else {
346     while (r < origin || r >= bound)
347     r = mix32(nextSeed());
348     }
349     }
350     return r;
351     }
352    
353     /**
354     * The form of nextDouble used by DoubleStream Spliterators.
355     *
356     * @param origin the least value, unless greater than bound
357     * @param bound the upper bound (exclusive), must not equal origin
358     * @return a pseudorandom value
359     */
360     final double internalNextDouble(double origin, double bound) {
361 dl 1.5 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
362 dl 1.1 if (origin < bound) {
363     r = r * (bound - origin) + origin;
364 dl 1.7 if (r >= bound) // correct for rounding
365 dl 1.1 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
366     }
367     return r;
368     }
369    
370     /* ---------------- public methods ---------------- */
371    
372     /**
373 dl 1.7 * Creates a new SplittableRandom instance using the specified
374     * initial seed. SplittableRandom instances created with the same
375 dl 1.11 * seed in the same program generate identical sequences of values.
376 dl 1.1 *
377     * @param seed the initial seed
378     */
379     public SplittableRandom(long seed) {
380 dl 1.15 this(seed, INITIAL_GAMMA);
381 dl 1.1 }
382    
383     /**
384     * Creates a new SplittableRandom instance that is likely to
385     * generate sequences of values that are statistically independent
386     * of those of any other instances in the current program; and
387     * may, and typically does, vary across program invocations.
388     */
389 dl 1.15 public SplittableRandom() { // emulate seeder.split()
390     this.gamma = nextGamma(this.seed = seeder.addAndGet(INITIAL_GAMMA));
391 dl 1.1 }
392    
393     /**
394     * Constructs and returns a new SplittableRandom instance that
395     * shares no mutable state with this instance. However, with very
396     * high probability, the set of values collectively generated by
397     * the two objects has the same statistical properties as if the
398     * same quantity of values were generated by a single thread using
399     * a single SplittableRandom object. Either or both of the two
400     * objects may be further split using the {@code split()} method,
401     * and the same expected statistical properties apply to the
402     * entire set of generators constructed by such recursive
403     * splitting.
404     *
405     * @return the new SplittableRandom instance
406     */
407     public SplittableRandom split() {
408 dl 1.15 long s = nextSeed();
409     return new SplittableRandom(s, nextGamma(s));
410 dl 1.1 }
411    
412     /**
413     * Returns a pseudorandom {@code int} value.
414     *
415 dl 1.7 * @return a pseudorandom {@code int} value
416 dl 1.1 */
417     public int nextInt() {
418     return mix32(nextSeed());
419     }
420    
421     /**
422 dl 1.7 * Returns a pseudorandom {@code int} value between zero (inclusive)
423 dl 1.1 * and the specified bound (exclusive).
424     *
425 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
426 dl 1.7 * @return a pseudorandom {@code int} value between zero
427 jsr166 1.10 * (inclusive) and the bound (exclusive)
428 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
429 dl 1.1 */
430     public int nextInt(int bound) {
431     if (bound <= 0)
432 dl 1.15 throw new IllegalArgumentException(BadBound);
433 dl 1.1 // Specialize internalNextInt for origin 0
434     int r = mix32(nextSeed());
435     int m = bound - 1;
436 dl 1.13 if ((bound & m) == 0) // power of two
437 dl 1.1 r &= m;
438     else { // reject over-represented candidates
439     for (int u = r >>> 1;
440 dl 1.7 u + m - (r = u % bound) < 0;
441 dl 1.1 u = mix32(nextSeed()) >>> 1)
442     ;
443     }
444     return r;
445     }
446    
447     /**
448     * Returns a pseudorandom {@code int} value between the specified
449     * origin (inclusive) and the specified bound (exclusive).
450     *
451     * @param origin the least value returned
452     * @param bound the upper bound (exclusive)
453     * @return a pseudorandom {@code int} value between the origin
454 jsr166 1.10 * (inclusive) and the bound (exclusive)
455 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
456 dl 1.1 * or equal to {@code bound}
457     */
458     public int nextInt(int origin, int bound) {
459     if (origin >= bound)
460 dl 1.15 throw new IllegalArgumentException(BadRange);
461 dl 1.1 return internalNextInt(origin, bound);
462     }
463    
464     /**
465     * Returns a pseudorandom {@code long} value.
466     *
467 dl 1.7 * @return a pseudorandom {@code long} value
468 dl 1.1 */
469     public long nextLong() {
470     return mix64(nextSeed());
471     }
472    
473     /**
474 dl 1.7 * Returns a pseudorandom {@code long} value between zero (inclusive)
475 dl 1.1 * and the specified bound (exclusive).
476     *
477 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
478 dl 1.7 * @return a pseudorandom {@code long} value between zero
479 jsr166 1.10 * (inclusive) and the bound (exclusive)
480 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
481 dl 1.1 */
482     public long nextLong(long bound) {
483     if (bound <= 0)
484 dl 1.15 throw new IllegalArgumentException(BadBound);
485 dl 1.1 // Specialize internalNextLong for origin 0
486     long r = mix64(nextSeed());
487     long m = bound - 1;
488     if ((bound & m) == 0L) // power of two
489     r &= m;
490     else { // reject over-represented candidates
491     for (long u = r >>> 1;
492     u + m - (r = u % bound) < 0L;
493     u = mix64(nextSeed()) >>> 1)
494     ;
495     }
496     return r;
497     }
498    
499     /**
500     * Returns a pseudorandom {@code long} value between the specified
501     * origin (inclusive) and the specified bound (exclusive).
502     *
503     * @param origin the least value returned
504     * @param bound the upper bound (exclusive)
505     * @return a pseudorandom {@code long} value between the origin
506 jsr166 1.10 * (inclusive) and the bound (exclusive)
507 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
508 dl 1.1 * or equal to {@code bound}
509     */
510     public long nextLong(long origin, long bound) {
511     if (origin >= bound)
512 dl 1.15 throw new IllegalArgumentException(BadRange);
513 dl 1.1 return internalNextLong(origin, bound);
514     }
515    
516     /**
517 dl 1.7 * Returns a pseudorandom {@code double} value between zero
518     * (inclusive) and one (exclusive).
519 dl 1.1 *
520 dl 1.7 * @return a pseudorandom {@code double} value between zero
521 dl 1.18 * (inclusive) and one (exclusive)
522 dl 1.1 */
523     public double nextDouble() {
524 dl 1.11 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
525 dl 1.1 }
526    
527     /**
528     * Returns a pseudorandom {@code double} value between 0.0
529     * (inclusive) and the specified bound (exclusive).
530     *
531 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
532 dl 1.7 * @return a pseudorandom {@code double} value between zero
533 jsr166 1.10 * (inclusive) and the bound (exclusive)
534 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
535 dl 1.1 */
536     public double nextDouble(double bound) {
537 dl 1.7 if (!(bound > 0.0))
538 dl 1.15 throw new IllegalArgumentException(BadBound);
539 dl 1.11 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
540 dl 1.1 return (result < bound) ? result : // correct for rounding
541     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
542     }
543    
544     /**
545 dl 1.7 * Returns a pseudorandom {@code double} value between the specified
546 dl 1.1 * origin (inclusive) and bound (exclusive).
547     *
548     * @param origin the least value returned
549 dl 1.18 * @param bound the upper bound (exclusive)
550 dl 1.1 * @return a pseudorandom {@code double} value between the origin
551 jsr166 1.10 * (inclusive) and the bound (exclusive)
552 dl 1.1 * @throws IllegalArgumentException if {@code origin} is greater than
553     * or equal to {@code bound}
554     */
555     public double nextDouble(double origin, double bound) {
556 dl 1.7 if (!(origin < bound))
557 dl 1.15 throw new IllegalArgumentException(BadRange);
558 dl 1.1 return internalNextDouble(origin, bound);
559     }
560    
561 dl 1.11 /**
562     * Returns a pseudorandom {@code boolean} value.
563     *
564     * @return a pseudorandom {@code boolean} value
565     */
566     public boolean nextBoolean() {
567     return mix32(nextSeed()) < 0;
568     }
569    
570 dl 1.1 // stream methods, coded in a way intended to better isolate for
571     // maintenance purposes the small differences across forms.
572    
573     /**
574 dl 1.16 * Returns a stream producing the given {@code streamSize} number
575     * of pseudorandom {@code int} values from this generator and/or
576     * one split from it.
577 dl 1.1 *
578     * @param streamSize the number of values to generate
579     * @return a stream of pseudorandom {@code int} values
580     * @throws IllegalArgumentException if {@code streamSize} is
581 dl 1.7 * less than zero
582 dl 1.1 */
583     public IntStream ints(long streamSize) {
584     if (streamSize < 0L)
585 dl 1.15 throw new IllegalArgumentException(BadSize);
586 dl 1.1 return StreamSupport.intStream
587     (new RandomIntsSpliterator
588     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
589     false);
590     }
591    
592     /**
593     * Returns an effectively unlimited stream of pseudorandom {@code int}
594 dl 1.16 * values from this generator and/or one split from it.
595 dl 1.1 *
596     * @implNote This method is implemented to be equivalent to {@code
597     * ints(Long.MAX_VALUE)}.
598     *
599     * @return a stream of pseudorandom {@code int} values
600     */
601     public IntStream ints() {
602     return StreamSupport.intStream
603     (new RandomIntsSpliterator
604     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
605     false);
606     }
607    
608     /**
609 dl 1.16 * Returns a stream producing the given {@code streamSize} number
610 dl 1.18 * of pseudorandom {@code int} values from this generator and/or one split
611     * from it; each value conforms to the given origin (inclusive) and bound
612     * (exclusive).
613 dl 1.1 *
614     * @param streamSize the number of values to generate
615 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
616     * @param randomNumberBound the bound (exclusive) of each random value
617 dl 1.1 * @return a stream of pseudorandom {@code int} values,
618 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
619 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
620 dl 1.7 * less than zero, or {@code randomNumberOrigin}
621 dl 1.1 * is greater than or equal to {@code randomNumberBound}
622     */
623     public IntStream ints(long streamSize, int randomNumberOrigin,
624     int randomNumberBound) {
625     if (streamSize < 0L)
626 dl 1.15 throw new IllegalArgumentException(BadSize);
627 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
628 dl 1.15 throw new IllegalArgumentException(BadRange);
629 dl 1.1 return StreamSupport.intStream
630     (new RandomIntsSpliterator
631     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
632     false);
633     }
634    
635     /**
636     * Returns an effectively unlimited stream of pseudorandom {@code
637 dl 1.18 * int} values from this generator and/or one split from it; each value
638     * conforms to the given origin (inclusive) and bound (exclusive).
639 dl 1.1 *
640     * @implNote This method is implemented to be equivalent to {@code
641     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
642     *
643 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
644     * @param randomNumberBound the bound (exclusive) of each random value
645 dl 1.1 * @return a stream of pseudorandom {@code int} values,
646 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
647 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
648     * is greater than or equal to {@code randomNumberBound}
649     */
650     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
651     if (randomNumberOrigin >= randomNumberBound)
652 dl 1.15 throw new IllegalArgumentException(BadRange);
653 dl 1.1 return StreamSupport.intStream
654     (new RandomIntsSpliterator
655     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
656     false);
657     }
658    
659     /**
660 dl 1.16 * Returns a stream producing the given {@code streamSize} number
661     * of pseudorandom {@code long} values from this generator and/or
662     * one split from it.
663 dl 1.1 *
664     * @param streamSize the number of values to generate
665 dl 1.7 * @return a stream of pseudorandom {@code long} values
666 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
667 dl 1.7 * less than zero
668 dl 1.1 */
669     public LongStream longs(long streamSize) {
670     if (streamSize < 0L)
671 dl 1.15 throw new IllegalArgumentException(BadSize);
672 dl 1.1 return StreamSupport.longStream
673     (new RandomLongsSpliterator
674     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
675     false);
676     }
677    
678     /**
679 dl 1.16 * Returns an effectively unlimited stream of pseudorandom {@code
680     * long} values from this generator and/or one split from it.
681 dl 1.1 *
682     * @implNote This method is implemented to be equivalent to {@code
683     * longs(Long.MAX_VALUE)}.
684     *
685     * @return a stream of pseudorandom {@code long} values
686     */
687     public LongStream longs() {
688     return StreamSupport.longStream
689     (new RandomLongsSpliterator
690     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
691     false);
692     }
693    
694     /**
695 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
696 dl 1.18 * pseudorandom {@code long} values from this generator and/or one split
697     * from it; each value conforms to the given origin (inclusive) and bound
698     * (exclusive).
699 dl 1.1 *
700     * @param streamSize the number of values to generate
701 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
702     * @param randomNumberBound the bound (exclusive) of each random value
703 dl 1.1 * @return a stream of pseudorandom {@code long} values,
704 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
705 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
706 dl 1.7 * less than zero, or {@code randomNumberOrigin}
707 dl 1.1 * is greater than or equal to {@code randomNumberBound}
708     */
709     public LongStream longs(long streamSize, long randomNumberOrigin,
710     long randomNumberBound) {
711     if (streamSize < 0L)
712 dl 1.15 throw new IllegalArgumentException(BadSize);
713 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
714 dl 1.15 throw new IllegalArgumentException(BadRange);
715 dl 1.1 return StreamSupport.longStream
716     (new RandomLongsSpliterator
717     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
718     false);
719     }
720    
721     /**
722     * Returns an effectively unlimited stream of pseudorandom {@code
723 dl 1.18 * long} values from this generator and/or one split from it; each value
724     * conforms to the given origin (inclusive) and bound (exclusive).
725 dl 1.1 *
726     * @implNote This method is implemented to be equivalent to {@code
727     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
728     *
729 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
730     * @param randomNumberBound the bound (exclusive) of each random value
731 dl 1.1 * @return a stream of pseudorandom {@code long} values,
732 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
733 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
734     * is greater than or equal to {@code randomNumberBound}
735     */
736     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
737     if (randomNumberOrigin >= randomNumberBound)
738 dl 1.15 throw new IllegalArgumentException(BadRange);
739 dl 1.1 return StreamSupport.longStream
740     (new RandomLongsSpliterator
741     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
742     false);
743     }
744    
745     /**
746 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
747 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
748     * from it; each value is between zero (inclusive) and one (exclusive).
749 dl 1.1 *
750     * @param streamSize the number of values to generate
751     * @return a stream of {@code double} values
752     * @throws IllegalArgumentException if {@code streamSize} is
753 dl 1.7 * less than zero
754 dl 1.1 */
755     public DoubleStream doubles(long streamSize) {
756     if (streamSize < 0L)
757 dl 1.15 throw new IllegalArgumentException(BadSize);
758 dl 1.1 return StreamSupport.doubleStream
759     (new RandomDoublesSpliterator
760     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
761     false);
762     }
763    
764     /**
765     * Returns an effectively unlimited stream of pseudorandom {@code
766 dl 1.18 * double} values from this generator and/or one split from it; each value
767     * is between zero (inclusive) and one (exclusive).
768 dl 1.1 *
769     * @implNote This method is implemented to be equivalent to {@code
770     * doubles(Long.MAX_VALUE)}.
771     *
772     * @return a stream of pseudorandom {@code double} values
773     */
774     public DoubleStream doubles() {
775     return StreamSupport.doubleStream
776     (new RandomDoublesSpliterator
777     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
778     false);
779     }
780    
781     /**
782 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
783 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
784     * from it; each value conforms to the given origin (inclusive) and bound
785     * (exclusive).
786 dl 1.1 *
787     * @param streamSize the number of values to generate
788 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
789     * @param randomNumberBound the bound (exclusive) of each random value
790 dl 1.1 * @return a stream of pseudorandom {@code double} values,
791 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
792 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
793 dl 1.18 * less than zero
794 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
795     * is greater than or equal to {@code randomNumberBound}
796     */
797     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
798     double randomNumberBound) {
799     if (streamSize < 0L)
800 dl 1.15 throw new IllegalArgumentException(BadSize);
801 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
802 dl 1.15 throw new IllegalArgumentException(BadRange);
803 dl 1.1 return StreamSupport.doubleStream
804     (new RandomDoublesSpliterator
805     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
806     false);
807     }
808    
809     /**
810     * Returns an effectively unlimited stream of pseudorandom {@code
811 dl 1.18 * double} values from this generator and/or one split from it; each value
812     * conforms to the given origin (inclusive) and bound (exclusive).
813 dl 1.1 *
814     * @implNote This method is implemented to be equivalent to {@code
815     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
816     *
817 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
818     * @param randomNumberBound the bound (exclusive) of each random value
819 dl 1.1 * @return a stream of pseudorandom {@code double} values,
820 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
821 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
822     * is greater than or equal to {@code randomNumberBound}
823     */
824     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
825 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
826 dl 1.15 throw new IllegalArgumentException(BadRange);
827 dl 1.1 return StreamSupport.doubleStream
828     (new RandomDoublesSpliterator
829     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
830     false);
831     }
832    
833     /**
834     * Spliterator for int streams. We multiplex the four int
835 dl 1.7 * versions into one class by treating a bound less than origin as
836 dl 1.1 * unbounded, and also by treating "infinite" as equivalent to
837     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
838     * approach. The long and double versions of this class are
839     * identical except for types.
840     */
841 dl 1.11 static final class RandomIntsSpliterator implements Spliterator.OfInt {
842 dl 1.1 final SplittableRandom rng;
843     long index;
844     final long fence;
845     final int origin;
846     final int bound;
847     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
848     int origin, int bound) {
849     this.rng = rng; this.index = index; this.fence = fence;
850     this.origin = origin; this.bound = bound;
851     }
852    
853     public RandomIntsSpliterator trySplit() {
854     long i = index, m = (i + fence) >>> 1;
855     return (m <= i) ? null :
856     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
857     }
858    
859     public long estimateSize() {
860     return fence - index;
861     }
862    
863     public int characteristics() {
864     return (Spliterator.SIZED | Spliterator.SUBSIZED |
865 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
866 dl 1.1 }
867    
868     public boolean tryAdvance(IntConsumer consumer) {
869     if (consumer == null) throw new NullPointerException();
870     long i = index, f = fence;
871     if (i < f) {
872     consumer.accept(rng.internalNextInt(origin, bound));
873     index = i + 1;
874     return true;
875     }
876     return false;
877     }
878    
879     public void forEachRemaining(IntConsumer consumer) {
880     if (consumer == null) throw new NullPointerException();
881     long i = index, f = fence;
882     if (i < f) {
883     index = f;
884 dl 1.15 SplittableRandom r = rng;
885 dl 1.1 int o = origin, b = bound;
886     do {
887 dl 1.15 consumer.accept(r.internalNextInt(o, b));
888 dl 1.1 } while (++i < f);
889     }
890     }
891     }
892    
893     /**
894     * Spliterator for long streams.
895     */
896 dl 1.11 static final class RandomLongsSpliterator implements Spliterator.OfLong {
897 dl 1.1 final SplittableRandom rng;
898     long index;
899     final long fence;
900     final long origin;
901     final long bound;
902     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
903     long origin, long bound) {
904     this.rng = rng; this.index = index; this.fence = fence;
905     this.origin = origin; this.bound = bound;
906     }
907    
908     public RandomLongsSpliterator trySplit() {
909     long i = index, m = (i + fence) >>> 1;
910     return (m <= i) ? null :
911     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
912     }
913    
914     public long estimateSize() {
915     return fence - index;
916     }
917    
918     public int characteristics() {
919     return (Spliterator.SIZED | Spliterator.SUBSIZED |
920 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
921 dl 1.1 }
922    
923     public boolean tryAdvance(LongConsumer consumer) {
924     if (consumer == null) throw new NullPointerException();
925     long i = index, f = fence;
926     if (i < f) {
927     consumer.accept(rng.internalNextLong(origin, bound));
928     index = i + 1;
929     return true;
930     }
931     return false;
932     }
933    
934     public void forEachRemaining(LongConsumer consumer) {
935     if (consumer == null) throw new NullPointerException();
936     long i = index, f = fence;
937     if (i < f) {
938     index = f;
939 dl 1.15 SplittableRandom r = rng;
940 dl 1.1 long o = origin, b = bound;
941     do {
942 dl 1.15 consumer.accept(r.internalNextLong(o, b));
943 dl 1.1 } while (++i < f);
944     }
945     }
946    
947     }
948    
949     /**
950     * Spliterator for double streams.
951     */
952 dl 1.11 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
953 dl 1.1 final SplittableRandom rng;
954     long index;
955     final long fence;
956     final double origin;
957     final double bound;
958     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
959     double origin, double bound) {
960     this.rng = rng; this.index = index; this.fence = fence;
961     this.origin = origin; this.bound = bound;
962     }
963    
964     public RandomDoublesSpliterator trySplit() {
965     long i = index, m = (i + fence) >>> 1;
966     return (m <= i) ? null :
967     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
968     }
969    
970     public long estimateSize() {
971     return fence - index;
972     }
973    
974     public int characteristics() {
975     return (Spliterator.SIZED | Spliterator.SUBSIZED |
976 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
977 dl 1.1 }
978    
979     public boolean tryAdvance(DoubleConsumer consumer) {
980     if (consumer == null) throw new NullPointerException();
981     long i = index, f = fence;
982     if (i < f) {
983     consumer.accept(rng.internalNextDouble(origin, bound));
984     index = i + 1;
985     return true;
986     }
987     return false;
988     }
989    
990     public void forEachRemaining(DoubleConsumer consumer) {
991     if (consumer == null) throw new NullPointerException();
992     long i = index, f = fence;
993     if (i < f) {
994     index = f;
995 dl 1.15 SplittableRandom r = rng;
996 dl 1.1 double o = origin, b = bound;
997     do {
998 dl 1.15 consumer.accept(r.internalNextDouble(o, b));
999 dl 1.1 } while (++i < f);
1000     }
1001     }
1002     }
1003    
1004     }