ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.22
Committed: Fri Sep 20 09:38:07 2013 UTC (10 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.21: +0 -6 lines
Log Message:
Remove unused method

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28 dl 1.18 import java.security.SecureRandom;
29 dl 1.21 import java.net.NetworkInterface;
30     import java.util.Enumeration;
31 dl 1.1 import java.util.concurrent.atomic.AtomicLong;
32     import java.util.function.IntConsumer;
33     import java.util.function.LongConsumer;
34     import java.util.function.DoubleConsumer;
35     import java.util.stream.StreamSupport;
36     import java.util.stream.IntStream;
37     import java.util.stream.LongStream;
38     import java.util.stream.DoubleStream;
39    
40     /**
41     * A generator of uniform pseudorandom values applicable for use in
42     * (among other contexts) isolated parallel computations that may
43 dl 1.18 * generate subtasks. Class {@code SplittableRandom} supports methods for
44 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
45 dl 1.1 * and {@code double} with similar usages as for class
46 jsr166 1.9 * {@link java.util.Random} but differs in the following ways:
47     *
48     * <ul>
49 dl 1.1 *
50     * <li>Series of generated values pass the DieHarder suite testing
51     * independence and uniformity properties of random number generators.
52     * (Most recently validated with <a
53     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
54     * 3.31.1</a>.) These tests validate only the methods for certain
55     * types and ranges, but similar properties are expected to hold, at
56 dl 1.11 * least approximately, for others as well. The <em>period</em>
57     * (length of any series of generated values before it repeats) is at
58     * least 2<sup>64</sup>. </li>
59 dl 1.1 *
60     * <li> Method {@link #split} constructs and returns a new
61     * SplittableRandom instance that shares no mutable state with the
62 dl 1.7 * current instance. However, with very high probability, the
63     * values collectively generated by the two objects have the same
64 dl 1.1 * statistical properties as if the same quantity of values were
65     * generated by a single thread using a single {@code
66     * SplittableRandom} object. </li>
67     *
68     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
69     * They are designed to be split, not shared, across threads. For
70     * example, a {@link java.util.concurrent.ForkJoinTask
71     * fork/join-style} computation using random numbers might include a
72     * construction of the form {@code new
73     * Subtask(aSplittableRandom.split()).fork()}.
74     *
75     * <li>This class provides additional methods for generating random
76     * streams, that employ the above techniques when used in {@code
77     * stream.parallel()} mode.</li>
78     *
79     * </ul>
80     *
81 dl 1.18 * <p>Instances of {@code SplittableRandom} are not cryptographically
82     * secure. Consider instead using {@link java.security.SecureRandom}
83     * in security-sensitive applications. Additionally,
84     * default-constructed instances do not use a cryptographically random
85     * seed unless the {@linkplain System#getProperty system property}
86     * {@code java.util.secureRandomSeed} is set to {@code true}.
87     *
88 dl 1.1 * @author Guy Steele
89 dl 1.2 * @author Doug Lea
90 dl 1.1 * @since 1.8
91     */
92     public class SplittableRandom {
93    
94     /*
95     * Implementation Overview.
96     *
97     * This algorithm was inspired by the "DotMix" algorithm by
98     * Leiserson, Schardl, and Sukha "Deterministic Parallel
99     * Random-Number Generation for Dynamic-Multithreading Platforms",
100 dl 1.15 * PPoPP 2012, as well as those in "Parallel random numbers: as
101     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
102     * differs mainly in simplifying and cheapening operations.
103     *
104     * The primary update step (method nextSeed()) is to add a
105     * constant ("gamma") to the current (64 bit) seed, forming a
106     * simple sequence. The seed and the gamma values for any two
107     * SplittableRandom instances are highly likely to be different.
108     *
109     * Methods nextLong, nextInt, and derivatives do not return the
110     * sequence (seed) values, but instead a hash-like bit-mix of
111     * their bits, producing more independently distributed sequences.
112 dl 1.21 * For nextLong, the mix64 function is based on David Stafford's
113     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
114     * "Mix13" variant of the "64-bit finalizer" function in Austin
115     * Appleby's MurmurHash3 algorithm See
116     * http://code.google.com/p/smhasher/wiki/MurmurHash3 . The mix32
117     * function is based on Stafford's Mix04 mix function, but returns
118     * the upper 32 bits cast as int.
119 dl 1.15 *
120     * The split operation uses the current generator to form the seed
121     * and gamma for another SplittableRandom. To conservatively
122     * avoid potential correlations between seed and value generation,
123 dl 1.21 * gamma selection (method mixGamma) uses different
124     * (Murmurhash3's) mix constants. To avoid potential weaknesses
125     * in bit-mixing transformations, we restrict gammas to odd values
126     * with at least 24 0-1 or 1-0 bit transitions. Rather than
127     * rejecting candidates with too few or too many bits set, method
128     * mixGamma flips some bits (which has the effect of mapping at
129     * most 4 to any given gamma value). This reduces the effective
130     * set of 64bit odd gamma values by about 2%, and serves as an
131 dl 1.15 * automated screening for sequence constant selection that is
132     * left as an empirical decision in some other hashing and crypto
133     * algorithms.
134     *
135     * The resulting generator thus transforms a sequence in which
136     * (typically) many bits change on each step, with an inexpensive
137     * mixer with good (but less than cryptographically secure)
138     * avalanching.
139     *
140     * The default (no-argument) constructor, in essence, invokes
141 dl 1.21 * split() for a common "defaultGen" SplittableRandom. Unlike
142     * other cases, this split must be performed in a thread-safe
143     * manner, so we use an AtomicLong to represent the seed rather
144     * than use an explicit SplittableRandom. To bootstrap the
145     * defaultGen, we start off using a seed based on current time and
146     * network interface address unless the java.util.secureRandomSeed
147     * property is set. This serves as a slimmed-down (and insecure)
148     * variant of SecureRandom that also avoids stalls that may occur
149     * when using /dev/random.
150 dl 1.15 *
151     * It is a relatively simple matter to apply the basic design here
152     * to use 128 bit seeds. However, emulating 128bit arithmetic and
153     * carrying around twice the state add more overhead than appears
154     * warranted for current usages.
155 dl 1.13 *
156 dl 1.15 * File organization: First the non-public methods that constitute
157     * the main algorithm, then the main public methods, followed by
158     * some custom spliterator classes needed for stream methods.
159 dl 1.1 */
160    
161     /**
162 dl 1.21 * The golden ratio scaled to 64bits, used as the initial gamma
163     * value for (unsplit) SplittableRandoms.
164 dl 1.1 */
165 dl 1.21 private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
166 dl 1.11
167     /**
168 dl 1.5 * The least non-zero value returned by nextDouble(). This value
169 dl 1.7 * is scaled by a random value of 53 bits to produce a result.
170 dl 1.5 */
171 dl 1.21 private static final double DOUBLE_ULP = 1.0 / (1L << 53);
172 dl 1.5
173     /**
174 dl 1.15 * The seed. Updated only via method nextSeed.
175 dl 1.1 */
176     private long seed;
177    
178     /**
179 dl 1.15 * The step value.
180 dl 1.1 */
181     private final long gamma;
182    
183     /**
184 dl 1.15 * Internal constructor used by all others except default constructor.
185 dl 1.1 */
186 dl 1.15 private SplittableRandom(long seed, long gamma) {
187     this.seed = seed;
188     this.gamma = gamma;
189 dl 1.1 }
190    
191     /**
192 dl 1.21 * Computes Stafford variant 13 of 64bit mix function.
193 dl 1.1 */
194     private static long mix64(long z) {
195 dl 1.21 z *= 0xbf58476d1ce4e5b9L;
196     z = (z ^ (z >>> 32)) * 0x94d049bb133111ebL;
197     return z ^ (z >>> 32);
198     }
199    
200 dl 1.1 /**
201 dl 1.21 * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
202 dl 1.1 */
203     private static int mix32(long z) {
204 dl 1.21 z *= 0x62a9d9ed799705f5L;
205     return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
206 dl 1.1 }
207    
208     /**
209 dl 1.15 * Returns the gamma value to use for a new split instance.
210 dl 1.13 */
211 dl 1.21 private static long mixGamma(long z) {
212     z *= 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
213     z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
214     z = (z ^ (z >>> 33)) | 1L; // force to be odd
215     int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
216     return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
217 dl 1.13 }
218    
219     /**
220 dl 1.15 * Adds gamma to seed.
221 dl 1.7 */
222 dl 1.15 private long nextSeed() {
223     return seed += gamma;
224 dl 1.7 }
225    
226     /**
227 dl 1.15 * The seed generator for default constructors.
228 dl 1.7 */
229 dl 1.21 private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
230 dl 1.7
231 dl 1.18 private static long initialSeed() {
232 dl 1.21 String pp = java.security.AccessController.doPrivileged(
233     new sun.security.action.GetPropertyAction(
234     "java.util.secureRandomSeed"));
235     if (pp != null && pp.equalsIgnoreCase("true")) {
236     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
237     long s = (long)(seedBytes[0]) & 0xffL;
238     for (int i = 1; i < 8; ++i)
239     s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
240     return s;
241 dl 1.18 }
242 dl 1.21 long h = 0L;
243 jsr166 1.17 try {
244 dl 1.21 Enumeration<NetworkInterface> ifcs =
245     NetworkInterface.getNetworkInterfaces();
246     boolean retry = false; // retry once if getHardwareAddress is null
247     while (ifcs.hasMoreElements()) {
248     NetworkInterface ifc = ifcs.nextElement();
249     if (!ifc.isVirtual()) { // skip fake addresses
250     byte[] bs = ifc.getHardwareAddress();
251     if (bs != null) {
252     int n = bs.length;
253     int m = Math.min(n >>> 1, 4);
254     for (int i = 0; i < m; ++i)
255     h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
256     if (m < 4)
257     h = (h << 8) ^ bs[n-1-m];
258     h = mix64(h);
259     break;
260     }
261     else if (!retry)
262     retry = true;
263     else
264     break;
265     }
266     }
267 dl 1.18 } catch (Exception ignore) {
268 jsr166 1.17 }
269 dl 1.21 return (h ^ mix64(System.currentTimeMillis()) ^
270 dl 1.18 mix64(System.nanoTime()));
271 dl 1.1 }
272    
273 dl 1.15 // IllegalArgumentException messages
274     static final String BadBound = "bound must be positive";
275     static final String BadRange = "bound must be greater than origin";
276     static final String BadSize = "size must be non-negative";
277 dl 1.12
278 dl 1.1 /*
279     * Internal versions of nextX methods used by streams, as well as
280     * the public nextX(origin, bound) methods. These exist mainly to
281     * avoid the need for multiple versions of stream spliterators
282     * across the different exported forms of streams.
283     */
284    
285     /**
286     * The form of nextLong used by LongStream Spliterators. If
287     * origin is greater than bound, acts as unbounded form of
288     * nextLong, else as bounded form.
289     *
290     * @param origin the least value, unless greater than bound
291     * @param bound the upper bound (exclusive), must not equal origin
292     * @return a pseudorandom value
293     */
294     final long internalNextLong(long origin, long bound) {
295     /*
296     * Four Cases:
297     *
298     * 1. If the arguments indicate unbounded form, act as
299     * nextLong().
300     *
301     * 2. If the range is an exact power of two, apply the
302     * associated bit mask.
303     *
304     * 3. If the range is positive, loop to avoid potential bias
305     * when the implicit nextLong() bound (2<sup>64</sup>) is not
306     * evenly divisible by the range. The loop rejects candidates
307     * computed from otherwise over-represented values. The
308     * expected number of iterations under an ideal generator
309 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
310     * takes an unlovable form. Because the first candidate is
311     * already available, we need a break-in-the-middle
312     * construction, which is concisely but cryptically performed
313     * within the while-condition of a body-less for loop.
314 dl 1.1 *
315     * 4. Otherwise, the range cannot be represented as a positive
316 dl 1.4 * long. The loop repeatedly generates unbounded longs until
317     * obtaining a candidate meeting constraints (with an expected
318     * number of iterations of less than two).
319 dl 1.1 */
320    
321     long r = mix64(nextSeed());
322     if (origin < bound) {
323     long n = bound - origin, m = n - 1;
324 dl 1.7 if ((n & m) == 0L) // power of two
325 dl 1.1 r = (r & m) + origin;
326 dl 1.7 else if (n > 0L) { // reject over-represented candidates
327 dl 1.1 for (long u = r >>> 1; // ensure nonnegative
328 dl 1.7 u + m - (r = u % n) < 0L; // rejection check
329 dl 1.1 u = mix64(nextSeed()) >>> 1) // retry
330     ;
331     r += origin;
332     }
333 dl 1.7 else { // range not representable as long
334 dl 1.1 while (r < origin || r >= bound)
335     r = mix64(nextSeed());
336     }
337     }
338     return r;
339     }
340    
341     /**
342     * The form of nextInt used by IntStream Spliterators.
343     * Exactly the same as long version, except for types.
344     *
345     * @param origin the least value, unless greater than bound
346     * @param bound the upper bound (exclusive), must not equal origin
347     * @return a pseudorandom value
348     */
349     final int internalNextInt(int origin, int bound) {
350     int r = mix32(nextSeed());
351     if (origin < bound) {
352     int n = bound - origin, m = n - 1;
353 dl 1.13 if ((n & m) == 0)
354 dl 1.1 r = (r & m) + origin;
355     else if (n > 0) {
356     for (int u = r >>> 1;
357 dl 1.7 u + m - (r = u % n) < 0;
358 dl 1.1 u = mix32(nextSeed()) >>> 1)
359     ;
360     r += origin;
361     }
362     else {
363     while (r < origin || r >= bound)
364     r = mix32(nextSeed());
365     }
366     }
367     return r;
368     }
369    
370     /**
371     * The form of nextDouble used by DoubleStream Spliterators.
372     *
373     * @param origin the least value, unless greater than bound
374     * @param bound the upper bound (exclusive), must not equal origin
375     * @return a pseudorandom value
376     */
377     final double internalNextDouble(double origin, double bound) {
378 dl 1.21 double r = (nextLong() >>> 11) * DOUBLE_ULP;
379 dl 1.1 if (origin < bound) {
380     r = r * (bound - origin) + origin;
381 dl 1.7 if (r >= bound) // correct for rounding
382 dl 1.1 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
383     }
384     return r;
385     }
386    
387     /* ---------------- public methods ---------------- */
388    
389     /**
390 dl 1.7 * Creates a new SplittableRandom instance using the specified
391     * initial seed. SplittableRandom instances created with the same
392 dl 1.11 * seed in the same program generate identical sequences of values.
393 dl 1.1 *
394     * @param seed the initial seed
395     */
396     public SplittableRandom(long seed) {
397 dl 1.21 this(seed, GOLDEN_GAMMA);
398 dl 1.1 }
399    
400     /**
401     * Creates a new SplittableRandom instance that is likely to
402     * generate sequences of values that are statistically independent
403     * of those of any other instances in the current program; and
404     * may, and typically does, vary across program invocations.
405     */
406 dl 1.21 public SplittableRandom() { // emulate defaultGen.split()
407     long s = defaultGen.getAndAdd(2*GOLDEN_GAMMA);
408     this.seed = mix64(s);
409     this.gamma = mixGamma(s + GOLDEN_GAMMA);
410 dl 1.1 }
411    
412     /**
413     * Constructs and returns a new SplittableRandom instance that
414     * shares no mutable state with this instance. However, with very
415     * high probability, the set of values collectively generated by
416     * the two objects has the same statistical properties as if the
417     * same quantity of values were generated by a single thread using
418     * a single SplittableRandom object. Either or both of the two
419     * objects may be further split using the {@code split()} method,
420     * and the same expected statistical properties apply to the
421     * entire set of generators constructed by such recursive
422     * splitting.
423     *
424     * @return the new SplittableRandom instance
425     */
426     public SplittableRandom split() {
427 dl 1.21 return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
428 dl 1.1 }
429    
430     /**
431     * Returns a pseudorandom {@code int} value.
432     *
433 dl 1.7 * @return a pseudorandom {@code int} value
434 dl 1.1 */
435     public int nextInt() {
436     return mix32(nextSeed());
437     }
438    
439     /**
440 dl 1.7 * Returns a pseudorandom {@code int} value between zero (inclusive)
441 dl 1.1 * and the specified bound (exclusive).
442     *
443 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
444 dl 1.7 * @return a pseudorandom {@code int} value between zero
445 jsr166 1.10 * (inclusive) and the bound (exclusive)
446 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
447 dl 1.1 */
448     public int nextInt(int bound) {
449     if (bound <= 0)
450 dl 1.15 throw new IllegalArgumentException(BadBound);
451 dl 1.1 // Specialize internalNextInt for origin 0
452     int r = mix32(nextSeed());
453     int m = bound - 1;
454 dl 1.13 if ((bound & m) == 0) // power of two
455 dl 1.1 r &= m;
456     else { // reject over-represented candidates
457     for (int u = r >>> 1;
458 dl 1.7 u + m - (r = u % bound) < 0;
459 dl 1.1 u = mix32(nextSeed()) >>> 1)
460     ;
461     }
462     return r;
463     }
464    
465     /**
466     * Returns a pseudorandom {@code int} value between the specified
467     * origin (inclusive) and the specified bound (exclusive).
468     *
469     * @param origin the least value returned
470     * @param bound the upper bound (exclusive)
471     * @return a pseudorandom {@code int} value between the origin
472 jsr166 1.10 * (inclusive) and the bound (exclusive)
473 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
474 dl 1.1 * or equal to {@code bound}
475     */
476     public int nextInt(int origin, int bound) {
477     if (origin >= bound)
478 dl 1.15 throw new IllegalArgumentException(BadRange);
479 dl 1.1 return internalNextInt(origin, bound);
480     }
481    
482     /**
483     * Returns a pseudorandom {@code long} value.
484     *
485 dl 1.7 * @return a pseudorandom {@code long} value
486 dl 1.1 */
487     public long nextLong() {
488     return mix64(nextSeed());
489     }
490    
491     /**
492 dl 1.7 * Returns a pseudorandom {@code long} value between zero (inclusive)
493 dl 1.1 * and the specified bound (exclusive).
494     *
495 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
496 dl 1.7 * @return a pseudorandom {@code long} value between zero
497 jsr166 1.10 * (inclusive) and the bound (exclusive)
498 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
499 dl 1.1 */
500     public long nextLong(long bound) {
501     if (bound <= 0)
502 dl 1.15 throw new IllegalArgumentException(BadBound);
503 dl 1.1 // Specialize internalNextLong for origin 0
504     long r = mix64(nextSeed());
505     long m = bound - 1;
506     if ((bound & m) == 0L) // power of two
507     r &= m;
508     else { // reject over-represented candidates
509     for (long u = r >>> 1;
510     u + m - (r = u % bound) < 0L;
511     u = mix64(nextSeed()) >>> 1)
512     ;
513     }
514     return r;
515     }
516    
517     /**
518     * Returns a pseudorandom {@code long} value between the specified
519     * origin (inclusive) and the specified bound (exclusive).
520     *
521     * @param origin the least value returned
522     * @param bound the upper bound (exclusive)
523     * @return a pseudorandom {@code long} value between the origin
524 jsr166 1.10 * (inclusive) and the bound (exclusive)
525 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
526 dl 1.1 * or equal to {@code bound}
527     */
528     public long nextLong(long origin, long bound) {
529     if (origin >= bound)
530 dl 1.15 throw new IllegalArgumentException(BadRange);
531 dl 1.1 return internalNextLong(origin, bound);
532     }
533    
534     /**
535 dl 1.7 * Returns a pseudorandom {@code double} value between zero
536     * (inclusive) and one (exclusive).
537 dl 1.1 *
538 dl 1.7 * @return a pseudorandom {@code double} value between zero
539 dl 1.18 * (inclusive) and one (exclusive)
540 dl 1.1 */
541     public double nextDouble() {
542 dl 1.21 return (mix64(nextSeed()) >>> 11) * DOUBLE_ULP;
543 dl 1.1 }
544    
545     /**
546     * Returns a pseudorandom {@code double} value between 0.0
547     * (inclusive) and the specified bound (exclusive).
548     *
549 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
550 dl 1.7 * @return a pseudorandom {@code double} value between zero
551 jsr166 1.10 * (inclusive) and the bound (exclusive)
552 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
553 dl 1.1 */
554     public double nextDouble(double bound) {
555 dl 1.7 if (!(bound > 0.0))
556 dl 1.15 throw new IllegalArgumentException(BadBound);
557 dl 1.21 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_ULP * bound;
558 dl 1.1 return (result < bound) ? result : // correct for rounding
559     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
560     }
561    
562     /**
563 dl 1.7 * Returns a pseudorandom {@code double} value between the specified
564 dl 1.1 * origin (inclusive) and bound (exclusive).
565     *
566     * @param origin the least value returned
567 dl 1.18 * @param bound the upper bound (exclusive)
568 dl 1.1 * @return a pseudorandom {@code double} value between the origin
569 jsr166 1.10 * (inclusive) and the bound (exclusive)
570 dl 1.1 * @throws IllegalArgumentException if {@code origin} is greater than
571     * or equal to {@code bound}
572     */
573     public double nextDouble(double origin, double bound) {
574 dl 1.7 if (!(origin < bound))
575 dl 1.15 throw new IllegalArgumentException(BadRange);
576 dl 1.1 return internalNextDouble(origin, bound);
577     }
578    
579 dl 1.11 /**
580     * Returns a pseudorandom {@code boolean} value.
581     *
582     * @return a pseudorandom {@code boolean} value
583     */
584     public boolean nextBoolean() {
585     return mix32(nextSeed()) < 0;
586     }
587    
588 dl 1.1 // stream methods, coded in a way intended to better isolate for
589     // maintenance purposes the small differences across forms.
590    
591     /**
592 dl 1.16 * Returns a stream producing the given {@code streamSize} number
593     * of pseudorandom {@code int} values from this generator and/or
594     * one split from it.
595 dl 1.1 *
596     * @param streamSize the number of values to generate
597     * @return a stream of pseudorandom {@code int} values
598     * @throws IllegalArgumentException if {@code streamSize} is
599 dl 1.7 * less than zero
600 dl 1.1 */
601     public IntStream ints(long streamSize) {
602     if (streamSize < 0L)
603 dl 1.15 throw new IllegalArgumentException(BadSize);
604 dl 1.1 return StreamSupport.intStream
605     (new RandomIntsSpliterator
606     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
607     false);
608     }
609    
610     /**
611     * Returns an effectively unlimited stream of pseudorandom {@code int}
612 dl 1.16 * values from this generator and/or one split from it.
613 dl 1.1 *
614     * @implNote This method is implemented to be equivalent to {@code
615     * ints(Long.MAX_VALUE)}.
616     *
617     * @return a stream of pseudorandom {@code int} values
618     */
619     public IntStream ints() {
620     return StreamSupport.intStream
621     (new RandomIntsSpliterator
622     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
623     false);
624     }
625    
626     /**
627 dl 1.16 * Returns a stream producing the given {@code streamSize} number
628 dl 1.18 * of pseudorandom {@code int} values from this generator and/or one split
629     * from it; each value conforms to the given origin (inclusive) and bound
630     * (exclusive).
631 dl 1.1 *
632     * @param streamSize the number of values to generate
633 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
634     * @param randomNumberBound the bound (exclusive) of each random value
635 dl 1.1 * @return a stream of pseudorandom {@code int} values,
636 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
637 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
638 dl 1.7 * less than zero, or {@code randomNumberOrigin}
639 dl 1.1 * is greater than or equal to {@code randomNumberBound}
640     */
641     public IntStream ints(long streamSize, int randomNumberOrigin,
642     int randomNumberBound) {
643     if (streamSize < 0L)
644 dl 1.15 throw new IllegalArgumentException(BadSize);
645 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
646 dl 1.15 throw new IllegalArgumentException(BadRange);
647 dl 1.1 return StreamSupport.intStream
648     (new RandomIntsSpliterator
649     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
650     false);
651     }
652    
653     /**
654     * Returns an effectively unlimited stream of pseudorandom {@code
655 dl 1.18 * int} values from this generator and/or one split from it; each value
656     * conforms to the given origin (inclusive) and bound (exclusive).
657 dl 1.1 *
658     * @implNote This method is implemented to be equivalent to {@code
659     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
660     *
661 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
662     * @param randomNumberBound the bound (exclusive) of each random value
663 dl 1.1 * @return a stream of pseudorandom {@code int} values,
664 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
665 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
666     * is greater than or equal to {@code randomNumberBound}
667     */
668     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
669     if (randomNumberOrigin >= randomNumberBound)
670 dl 1.15 throw new IllegalArgumentException(BadRange);
671 dl 1.1 return StreamSupport.intStream
672     (new RandomIntsSpliterator
673     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
674     false);
675     }
676    
677     /**
678 dl 1.16 * Returns a stream producing the given {@code streamSize} number
679     * of pseudorandom {@code long} values from this generator and/or
680     * one split from it.
681 dl 1.1 *
682     * @param streamSize the number of values to generate
683 dl 1.7 * @return a stream of pseudorandom {@code long} values
684 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
685 dl 1.7 * less than zero
686 dl 1.1 */
687     public LongStream longs(long streamSize) {
688     if (streamSize < 0L)
689 dl 1.15 throw new IllegalArgumentException(BadSize);
690 dl 1.1 return StreamSupport.longStream
691     (new RandomLongsSpliterator
692     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
693     false);
694     }
695    
696     /**
697 dl 1.16 * Returns an effectively unlimited stream of pseudorandom {@code
698     * long} values from this generator and/or one split from it.
699 dl 1.1 *
700     * @implNote This method is implemented to be equivalent to {@code
701     * longs(Long.MAX_VALUE)}.
702     *
703     * @return a stream of pseudorandom {@code long} values
704     */
705     public LongStream longs() {
706     return StreamSupport.longStream
707     (new RandomLongsSpliterator
708     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
709     false);
710     }
711    
712     /**
713 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
714 dl 1.18 * pseudorandom {@code long} values from this generator and/or one split
715     * from it; each value conforms to the given origin (inclusive) and bound
716     * (exclusive).
717 dl 1.1 *
718     * @param streamSize the number of values to generate
719 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
720     * @param randomNumberBound the bound (exclusive) of each random value
721 dl 1.1 * @return a stream of pseudorandom {@code long} values,
722 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
723 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
724 dl 1.7 * less than zero, or {@code randomNumberOrigin}
725 dl 1.1 * is greater than or equal to {@code randomNumberBound}
726     */
727     public LongStream longs(long streamSize, long randomNumberOrigin,
728     long randomNumberBound) {
729     if (streamSize < 0L)
730 dl 1.15 throw new IllegalArgumentException(BadSize);
731 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
732 dl 1.15 throw new IllegalArgumentException(BadRange);
733 dl 1.1 return StreamSupport.longStream
734     (new RandomLongsSpliterator
735     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
736     false);
737     }
738    
739     /**
740     * Returns an effectively unlimited stream of pseudorandom {@code
741 dl 1.18 * long} values from this generator and/or one split from it; each value
742     * conforms to the given origin (inclusive) and bound (exclusive).
743 dl 1.1 *
744     * @implNote This method is implemented to be equivalent to {@code
745     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
746     *
747 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
748     * @param randomNumberBound the bound (exclusive) of each random value
749 dl 1.1 * @return a stream of pseudorandom {@code long} values,
750 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
751 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
752     * is greater than or equal to {@code randomNumberBound}
753     */
754     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
755     if (randomNumberOrigin >= randomNumberBound)
756 dl 1.15 throw new IllegalArgumentException(BadRange);
757 dl 1.1 return StreamSupport.longStream
758     (new RandomLongsSpliterator
759     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
760     false);
761     }
762    
763     /**
764 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
765 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
766     * from it; each value is between zero (inclusive) and one (exclusive).
767 dl 1.1 *
768     * @param streamSize the number of values to generate
769     * @return a stream of {@code double} values
770     * @throws IllegalArgumentException if {@code streamSize} is
771 dl 1.7 * less than zero
772 dl 1.1 */
773     public DoubleStream doubles(long streamSize) {
774     if (streamSize < 0L)
775 dl 1.15 throw new IllegalArgumentException(BadSize);
776 dl 1.1 return StreamSupport.doubleStream
777     (new RandomDoublesSpliterator
778     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
779     false);
780     }
781    
782     /**
783     * Returns an effectively unlimited stream of pseudorandom {@code
784 dl 1.18 * double} values from this generator and/or one split from it; each value
785     * is between zero (inclusive) and one (exclusive).
786 dl 1.1 *
787     * @implNote This method is implemented to be equivalent to {@code
788     * doubles(Long.MAX_VALUE)}.
789     *
790     * @return a stream of pseudorandom {@code double} values
791     */
792     public DoubleStream doubles() {
793     return StreamSupport.doubleStream
794     (new RandomDoublesSpliterator
795     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
796     false);
797     }
798    
799     /**
800 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
801 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
802     * from it; each value conforms to the given origin (inclusive) and bound
803     * (exclusive).
804 dl 1.1 *
805     * @param streamSize the number of values to generate
806 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
807     * @param randomNumberBound the bound (exclusive) of each random value
808 dl 1.1 * @return a stream of pseudorandom {@code double} values,
809 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
810 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
811 dl 1.18 * less than zero
812 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
813     * is greater than or equal to {@code randomNumberBound}
814     */
815     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
816     double randomNumberBound) {
817     if (streamSize < 0L)
818 dl 1.15 throw new IllegalArgumentException(BadSize);
819 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
820 dl 1.15 throw new IllegalArgumentException(BadRange);
821 dl 1.1 return StreamSupport.doubleStream
822     (new RandomDoublesSpliterator
823     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
824     false);
825     }
826    
827     /**
828     * Returns an effectively unlimited stream of pseudorandom {@code
829 dl 1.18 * double} values from this generator and/or one split from it; each value
830     * conforms to the given origin (inclusive) and bound (exclusive).
831 dl 1.1 *
832     * @implNote This method is implemented to be equivalent to {@code
833     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
834     *
835 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
836     * @param randomNumberBound the bound (exclusive) of each random value
837 dl 1.1 * @return a stream of pseudorandom {@code double} values,
838 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
839 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
840     * is greater than or equal to {@code randomNumberBound}
841     */
842     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
843 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
844 dl 1.15 throw new IllegalArgumentException(BadRange);
845 dl 1.1 return StreamSupport.doubleStream
846     (new RandomDoublesSpliterator
847     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
848     false);
849     }
850    
851     /**
852     * Spliterator for int streams. We multiplex the four int
853 dl 1.7 * versions into one class by treating a bound less than origin as
854 dl 1.1 * unbounded, and also by treating "infinite" as equivalent to
855     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
856     * approach. The long and double versions of this class are
857     * identical except for types.
858     */
859 dl 1.11 static final class RandomIntsSpliterator implements Spliterator.OfInt {
860 dl 1.1 final SplittableRandom rng;
861     long index;
862     final long fence;
863     final int origin;
864     final int bound;
865     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
866     int origin, int bound) {
867     this.rng = rng; this.index = index; this.fence = fence;
868     this.origin = origin; this.bound = bound;
869     }
870    
871     public RandomIntsSpliterator trySplit() {
872     long i = index, m = (i + fence) >>> 1;
873     return (m <= i) ? null :
874     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
875     }
876    
877     public long estimateSize() {
878     return fence - index;
879     }
880    
881     public int characteristics() {
882     return (Spliterator.SIZED | Spliterator.SUBSIZED |
883 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
884 dl 1.1 }
885    
886     public boolean tryAdvance(IntConsumer consumer) {
887     if (consumer == null) throw new NullPointerException();
888     long i = index, f = fence;
889     if (i < f) {
890     consumer.accept(rng.internalNextInt(origin, bound));
891     index = i + 1;
892     return true;
893     }
894     return false;
895     }
896    
897     public void forEachRemaining(IntConsumer consumer) {
898     if (consumer == null) throw new NullPointerException();
899     long i = index, f = fence;
900     if (i < f) {
901     index = f;
902 dl 1.15 SplittableRandom r = rng;
903 dl 1.1 int o = origin, b = bound;
904     do {
905 dl 1.15 consumer.accept(r.internalNextInt(o, b));
906 dl 1.1 } while (++i < f);
907     }
908     }
909     }
910    
911     /**
912     * Spliterator for long streams.
913     */
914 dl 1.11 static final class RandomLongsSpliterator implements Spliterator.OfLong {
915 dl 1.1 final SplittableRandom rng;
916     long index;
917     final long fence;
918     final long origin;
919     final long bound;
920     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
921     long origin, long bound) {
922     this.rng = rng; this.index = index; this.fence = fence;
923     this.origin = origin; this.bound = bound;
924     }
925    
926     public RandomLongsSpliterator trySplit() {
927     long i = index, m = (i + fence) >>> 1;
928     return (m <= i) ? null :
929     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
930     }
931    
932     public long estimateSize() {
933     return fence - index;
934     }
935    
936     public int characteristics() {
937     return (Spliterator.SIZED | Spliterator.SUBSIZED |
938 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
939 dl 1.1 }
940    
941     public boolean tryAdvance(LongConsumer consumer) {
942     if (consumer == null) throw new NullPointerException();
943     long i = index, f = fence;
944     if (i < f) {
945     consumer.accept(rng.internalNextLong(origin, bound));
946     index = i + 1;
947     return true;
948     }
949     return false;
950     }
951    
952     public void forEachRemaining(LongConsumer consumer) {
953     if (consumer == null) throw new NullPointerException();
954     long i = index, f = fence;
955     if (i < f) {
956     index = f;
957 dl 1.15 SplittableRandom r = rng;
958 dl 1.1 long o = origin, b = bound;
959     do {
960 dl 1.15 consumer.accept(r.internalNextLong(o, b));
961 dl 1.1 } while (++i < f);
962     }
963     }
964    
965     }
966    
967     /**
968     * Spliterator for double streams.
969     */
970 dl 1.11 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
971 dl 1.1 final SplittableRandom rng;
972     long index;
973     final long fence;
974     final double origin;
975     final double bound;
976     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
977     double origin, double bound) {
978     this.rng = rng; this.index = index; this.fence = fence;
979     this.origin = origin; this.bound = bound;
980     }
981    
982     public RandomDoublesSpliterator trySplit() {
983     long i = index, m = (i + fence) >>> 1;
984     return (m <= i) ? null :
985     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
986     }
987    
988     public long estimateSize() {
989     return fence - index;
990     }
991    
992     public int characteristics() {
993     return (Spliterator.SIZED | Spliterator.SUBSIZED |
994 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
995 dl 1.1 }
996    
997     public boolean tryAdvance(DoubleConsumer consumer) {
998     if (consumer == null) throw new NullPointerException();
999     long i = index, f = fence;
1000     if (i < f) {
1001     consumer.accept(rng.internalNextDouble(origin, bound));
1002     index = i + 1;
1003     return true;
1004     }
1005     return false;
1006     }
1007    
1008     public void forEachRemaining(DoubleConsumer consumer) {
1009     if (consumer == null) throw new NullPointerException();
1010     long i = index, f = fence;
1011     if (i < f) {
1012     index = f;
1013 dl 1.15 SplittableRandom r = rng;
1014 dl 1.1 double o = origin, b = bound;
1015     do {
1016 dl 1.15 consumer.accept(r.internalNextDouble(o, b));
1017 dl 1.1 } while (++i < f);
1018     }
1019     }
1020     }
1021    
1022     }