ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.24
Committed: Mon Oct 7 10:54:27 2013 UTC (10 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.23: +11 -11 lines
Log Message:
incorporate review comments; undo miscommit

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28 dl 1.21 import java.net.NetworkInterface;
29 dl 1.1 import java.util.concurrent.atomic.AtomicLong;
30     import java.util.function.IntConsumer;
31     import java.util.function.LongConsumer;
32     import java.util.function.DoubleConsumer;
33     import java.util.stream.StreamSupport;
34     import java.util.stream.IntStream;
35     import java.util.stream.LongStream;
36     import java.util.stream.DoubleStream;
37    
38     /**
39     * A generator of uniform pseudorandom values applicable for use in
40     * (among other contexts) isolated parallel computations that may
41 dl 1.18 * generate subtasks. Class {@code SplittableRandom} supports methods for
42 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
43 dl 1.1 * and {@code double} with similar usages as for class
44 jsr166 1.9 * {@link java.util.Random} but differs in the following ways:
45     *
46     * <ul>
47 dl 1.1 *
48     * <li>Series of generated values pass the DieHarder suite testing
49     * independence and uniformity properties of random number generators.
50     * (Most recently validated with <a
51     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
52     * 3.31.1</a>.) These tests validate only the methods for certain
53     * types and ranges, but similar properties are expected to hold, at
54 dl 1.11 * least approximately, for others as well. The <em>period</em>
55     * (length of any series of generated values before it repeats) is at
56     * least 2<sup>64</sup>. </li>
57 dl 1.1 *
58     * <li> Method {@link #split} constructs and returns a new
59     * SplittableRandom instance that shares no mutable state with the
60 dl 1.7 * current instance. However, with very high probability, the
61     * values collectively generated by the two objects have the same
62 dl 1.1 * statistical properties as if the same quantity of values were
63     * generated by a single thread using a single {@code
64     * SplittableRandom} object. </li>
65     *
66     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
67     * They are designed to be split, not shared, across threads. For
68     * example, a {@link java.util.concurrent.ForkJoinTask
69     * fork/join-style} computation using random numbers might include a
70     * construction of the form {@code new
71     * Subtask(aSplittableRandom.split()).fork()}.
72     *
73     * <li>This class provides additional methods for generating random
74     * streams, that employ the above techniques when used in {@code
75     * stream.parallel()} mode.</li>
76     *
77     * </ul>
78     *
79 dl 1.18 * <p>Instances of {@code SplittableRandom} are not cryptographically
80     * secure. Consider instead using {@link java.security.SecureRandom}
81     * in security-sensitive applications. Additionally,
82     * default-constructed instances do not use a cryptographically random
83     * seed unless the {@linkplain System#getProperty system property}
84     * {@code java.util.secureRandomSeed} is set to {@code true}.
85     *
86 dl 1.1 * @author Guy Steele
87 dl 1.2 * @author Doug Lea
88 dl 1.1 * @since 1.8
89     */
90 dl 1.23 public final class SplittableRandom {
91 dl 1.1
92     /*
93     * Implementation Overview.
94     *
95     * This algorithm was inspired by the "DotMix" algorithm by
96     * Leiserson, Schardl, and Sukha "Deterministic Parallel
97     * Random-Number Generation for Dynamic-Multithreading Platforms",
98 dl 1.15 * PPoPP 2012, as well as those in "Parallel random numbers: as
99     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
100     * differs mainly in simplifying and cheapening operations.
101     *
102     * The primary update step (method nextSeed()) is to add a
103     * constant ("gamma") to the current (64 bit) seed, forming a
104     * simple sequence. The seed and the gamma values for any two
105     * SplittableRandom instances are highly likely to be different.
106     *
107     * Methods nextLong, nextInt, and derivatives do not return the
108     * sequence (seed) values, but instead a hash-like bit-mix of
109     * their bits, producing more independently distributed sequences.
110 dl 1.21 * For nextLong, the mix64 function is based on David Stafford's
111     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
112     * "Mix13" variant of the "64-bit finalizer" function in Austin
113 dl 1.24 * Appleby's MurmurHash3 algorithm (see
114     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
115 dl 1.21 * function is based on Stafford's Mix04 mix function, but returns
116     * the upper 32 bits cast as int.
117 dl 1.15 *
118     * The split operation uses the current generator to form the seed
119     * and gamma for another SplittableRandom. To conservatively
120     * avoid potential correlations between seed and value generation,
121 dl 1.21 * gamma selection (method mixGamma) uses different
122     * (Murmurhash3's) mix constants. To avoid potential weaknesses
123     * in bit-mixing transformations, we restrict gammas to odd values
124     * with at least 24 0-1 or 1-0 bit transitions. Rather than
125     * rejecting candidates with too few or too many bits set, method
126     * mixGamma flips some bits (which has the effect of mapping at
127     * most 4 to any given gamma value). This reduces the effective
128     * set of 64bit odd gamma values by about 2%, and serves as an
129 dl 1.15 * automated screening for sequence constant selection that is
130     * left as an empirical decision in some other hashing and crypto
131     * algorithms.
132     *
133     * The resulting generator thus transforms a sequence in which
134     * (typically) many bits change on each step, with an inexpensive
135     * mixer with good (but less than cryptographically secure)
136     * avalanching.
137     *
138     * The default (no-argument) constructor, in essence, invokes
139 dl 1.21 * split() for a common "defaultGen" SplittableRandom. Unlike
140     * other cases, this split must be performed in a thread-safe
141     * manner, so we use an AtomicLong to represent the seed rather
142     * than use an explicit SplittableRandom. To bootstrap the
143     * defaultGen, we start off using a seed based on current time and
144     * network interface address unless the java.util.secureRandomSeed
145     * property is set. This serves as a slimmed-down (and insecure)
146     * variant of SecureRandom that also avoids stalls that may occur
147     * when using /dev/random.
148 dl 1.15 *
149     * It is a relatively simple matter to apply the basic design here
150     * to use 128 bit seeds. However, emulating 128bit arithmetic and
151     * carrying around twice the state add more overhead than appears
152     * warranted for current usages.
153 dl 1.13 *
154 dl 1.15 * File organization: First the non-public methods that constitute
155     * the main algorithm, then the main public methods, followed by
156     * some custom spliterator classes needed for stream methods.
157 dl 1.1 */
158    
159     /**
160 dl 1.21 * The golden ratio scaled to 64bits, used as the initial gamma
161     * value for (unsplit) SplittableRandoms.
162 dl 1.1 */
163 dl 1.21 private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
164 dl 1.11
165     /**
166 dl 1.5 * The least non-zero value returned by nextDouble(). This value
167 dl 1.7 * is scaled by a random value of 53 bits to produce a result.
168 dl 1.5 */
169 dl 1.24 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
170 dl 1.5
171     /**
172 dl 1.15 * The seed. Updated only via method nextSeed.
173 dl 1.1 */
174     private long seed;
175    
176     /**
177 dl 1.15 * The step value.
178 dl 1.1 */
179     private final long gamma;
180    
181     /**
182 dl 1.15 * Internal constructor used by all others except default constructor.
183 dl 1.1 */
184 dl 1.15 private SplittableRandom(long seed, long gamma) {
185     this.seed = seed;
186     this.gamma = gamma;
187 dl 1.1 }
188    
189     /**
190 dl 1.21 * Computes Stafford variant 13 of 64bit mix function.
191 dl 1.1 */
192     private static long mix64(long z) {
193 dl 1.24 z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
194     z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
195     return z ^ (z >>> 31);
196 dl 1.21 }
197    
198 dl 1.1 /**
199 dl 1.21 * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
200 dl 1.1 */
201     private static int mix32(long z) {
202 dl 1.24 z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
203 dl 1.21 return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
204 dl 1.1 }
205    
206     /**
207 dl 1.15 * Returns the gamma value to use for a new split instance.
208 dl 1.13 */
209 dl 1.21 private static long mixGamma(long z) {
210 dl 1.24 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
211 dl 1.21 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
212     z = (z ^ (z >>> 33)) | 1L; // force to be odd
213     int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
214     return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
215 dl 1.13 }
216    
217     /**
218 dl 1.15 * Adds gamma to seed.
219 dl 1.7 */
220 dl 1.15 private long nextSeed() {
221     return seed += gamma;
222 dl 1.7 }
223    
224     /**
225 dl 1.15 * The seed generator for default constructors.
226 dl 1.7 */
227 dl 1.21 private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
228 dl 1.7
229 dl 1.18 private static long initialSeed() {
230 dl 1.21 String pp = java.security.AccessController.doPrivileged(
231     new sun.security.action.GetPropertyAction(
232     "java.util.secureRandomSeed"));
233     if (pp != null && pp.equalsIgnoreCase("true")) {
234     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
235     long s = (long)(seedBytes[0]) & 0xffL;
236     for (int i = 1; i < 8; ++i)
237     s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
238     return s;
239 dl 1.18 }
240 dl 1.21 long h = 0L;
241 jsr166 1.17 try {
242 dl 1.21 Enumeration<NetworkInterface> ifcs =
243 dl 1.23 NetworkInterface.getNetworkInterfaces();
244 dl 1.21 boolean retry = false; // retry once if getHardwareAddress is null
245     while (ifcs.hasMoreElements()) {
246     NetworkInterface ifc = ifcs.nextElement();
247     if (!ifc.isVirtual()) { // skip fake addresses
248     byte[] bs = ifc.getHardwareAddress();
249     if (bs != null) {
250     int n = bs.length;
251     int m = Math.min(n >>> 1, 4);
252     for (int i = 0; i < m; ++i)
253     h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
254     if (m < 4)
255     h = (h << 8) ^ bs[n-1-m];
256     h = mix64(h);
257     break;
258     }
259     else if (!retry)
260     retry = true;
261     else
262     break;
263     }
264     }
265 dl 1.18 } catch (Exception ignore) {
266 jsr166 1.17 }
267 dl 1.21 return (h ^ mix64(System.currentTimeMillis()) ^
268 dl 1.18 mix64(System.nanoTime()));
269 dl 1.1 }
270    
271 dl 1.15 // IllegalArgumentException messages
272     static final String BadBound = "bound must be positive";
273     static final String BadRange = "bound must be greater than origin";
274     static final String BadSize = "size must be non-negative";
275 dl 1.12
276 dl 1.1 /*
277     * Internal versions of nextX methods used by streams, as well as
278     * the public nextX(origin, bound) methods. These exist mainly to
279     * avoid the need for multiple versions of stream spliterators
280     * across the different exported forms of streams.
281     */
282    
283     /**
284     * The form of nextLong used by LongStream Spliterators. If
285     * origin is greater than bound, acts as unbounded form of
286     * nextLong, else as bounded form.
287     *
288     * @param origin the least value, unless greater than bound
289     * @param bound the upper bound (exclusive), must not equal origin
290     * @return a pseudorandom value
291     */
292     final long internalNextLong(long origin, long bound) {
293     /*
294     * Four Cases:
295     *
296     * 1. If the arguments indicate unbounded form, act as
297     * nextLong().
298     *
299     * 2. If the range is an exact power of two, apply the
300     * associated bit mask.
301     *
302     * 3. If the range is positive, loop to avoid potential bias
303     * when the implicit nextLong() bound (2<sup>64</sup>) is not
304     * evenly divisible by the range. The loop rejects candidates
305     * computed from otherwise over-represented values. The
306     * expected number of iterations under an ideal generator
307 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
308     * takes an unlovable form. Because the first candidate is
309     * already available, we need a break-in-the-middle
310     * construction, which is concisely but cryptically performed
311     * within the while-condition of a body-less for loop.
312 dl 1.1 *
313     * 4. Otherwise, the range cannot be represented as a positive
314 dl 1.4 * long. The loop repeatedly generates unbounded longs until
315     * obtaining a candidate meeting constraints (with an expected
316     * number of iterations of less than two).
317 dl 1.1 */
318    
319     long r = mix64(nextSeed());
320     if (origin < bound) {
321     long n = bound - origin, m = n - 1;
322 dl 1.7 if ((n & m) == 0L) // power of two
323 dl 1.1 r = (r & m) + origin;
324 dl 1.7 else if (n > 0L) { // reject over-represented candidates
325 dl 1.1 for (long u = r >>> 1; // ensure nonnegative
326 dl 1.7 u + m - (r = u % n) < 0L; // rejection check
327 dl 1.1 u = mix64(nextSeed()) >>> 1) // retry
328     ;
329     r += origin;
330     }
331 dl 1.7 else { // range not representable as long
332 dl 1.1 while (r < origin || r >= bound)
333     r = mix64(nextSeed());
334     }
335     }
336     return r;
337     }
338    
339     /**
340     * The form of nextInt used by IntStream Spliterators.
341     * Exactly the same as long version, except for types.
342     *
343     * @param origin the least value, unless greater than bound
344     * @param bound the upper bound (exclusive), must not equal origin
345     * @return a pseudorandom value
346     */
347     final int internalNextInt(int origin, int bound) {
348     int r = mix32(nextSeed());
349     if (origin < bound) {
350     int n = bound - origin, m = n - 1;
351 dl 1.13 if ((n & m) == 0)
352 dl 1.1 r = (r & m) + origin;
353     else if (n > 0) {
354     for (int u = r >>> 1;
355 dl 1.7 u + m - (r = u % n) < 0;
356 dl 1.1 u = mix32(nextSeed()) >>> 1)
357     ;
358     r += origin;
359     }
360     else {
361     while (r < origin || r >= bound)
362     r = mix32(nextSeed());
363     }
364     }
365     return r;
366     }
367    
368     /**
369     * The form of nextDouble used by DoubleStream Spliterators.
370     *
371     * @param origin the least value, unless greater than bound
372     * @param bound the upper bound (exclusive), must not equal origin
373     * @return a pseudorandom value
374     */
375     final double internalNextDouble(double origin, double bound) {
376 dl 1.24 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
377 dl 1.1 if (origin < bound) {
378     r = r * (bound - origin) + origin;
379 dl 1.7 if (r >= bound) // correct for rounding
380 dl 1.1 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
381     }
382     return r;
383     }
384    
385     /* ---------------- public methods ---------------- */
386    
387     /**
388 dl 1.7 * Creates a new SplittableRandom instance using the specified
389     * initial seed. SplittableRandom instances created with the same
390 dl 1.11 * seed in the same program generate identical sequences of values.
391 dl 1.1 *
392     * @param seed the initial seed
393     */
394     public SplittableRandom(long seed) {
395 dl 1.21 this(seed, GOLDEN_GAMMA);
396 dl 1.1 }
397    
398     /**
399     * Creates a new SplittableRandom instance that is likely to
400     * generate sequences of values that are statistically independent
401     * of those of any other instances in the current program; and
402     * may, and typically does, vary across program invocations.
403     */
404 dl 1.21 public SplittableRandom() { // emulate defaultGen.split()
405 dl 1.23 long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
406 dl 1.21 this.seed = mix64(s);
407     this.gamma = mixGamma(s + GOLDEN_GAMMA);
408 dl 1.1 }
409    
410     /**
411     * Constructs and returns a new SplittableRandom instance that
412     * shares no mutable state with this instance. However, with very
413     * high probability, the set of values collectively generated by
414     * the two objects has the same statistical properties as if the
415     * same quantity of values were generated by a single thread using
416     * a single SplittableRandom object. Either or both of the two
417     * objects may be further split using the {@code split()} method,
418     * and the same expected statistical properties apply to the
419     * entire set of generators constructed by such recursive
420     * splitting.
421     *
422     * @return the new SplittableRandom instance
423     */
424     public SplittableRandom split() {
425 dl 1.21 return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
426 dl 1.1 }
427    
428     /**
429     * Returns a pseudorandom {@code int} value.
430     *
431 dl 1.7 * @return a pseudorandom {@code int} value
432 dl 1.1 */
433     public int nextInt() {
434     return mix32(nextSeed());
435     }
436    
437     /**
438 dl 1.7 * Returns a pseudorandom {@code int} value between zero (inclusive)
439 dl 1.1 * and the specified bound (exclusive).
440     *
441 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
442 dl 1.7 * @return a pseudorandom {@code int} value between zero
443 jsr166 1.10 * (inclusive) and the bound (exclusive)
444 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
445 dl 1.1 */
446     public int nextInt(int bound) {
447     if (bound <= 0)
448 dl 1.15 throw new IllegalArgumentException(BadBound);
449 dl 1.1 // Specialize internalNextInt for origin 0
450     int r = mix32(nextSeed());
451     int m = bound - 1;
452 dl 1.13 if ((bound & m) == 0) // power of two
453 dl 1.1 r &= m;
454     else { // reject over-represented candidates
455     for (int u = r >>> 1;
456 dl 1.7 u + m - (r = u % bound) < 0;
457 dl 1.1 u = mix32(nextSeed()) >>> 1)
458     ;
459     }
460     return r;
461     }
462    
463     /**
464     * Returns a pseudorandom {@code int} value between the specified
465     * origin (inclusive) and the specified bound (exclusive).
466     *
467     * @param origin the least value returned
468     * @param bound the upper bound (exclusive)
469     * @return a pseudorandom {@code int} value between the origin
470 jsr166 1.10 * (inclusive) and the bound (exclusive)
471 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
472 dl 1.1 * or equal to {@code bound}
473     */
474     public int nextInt(int origin, int bound) {
475     if (origin >= bound)
476 dl 1.15 throw new IllegalArgumentException(BadRange);
477 dl 1.1 return internalNextInt(origin, bound);
478     }
479    
480     /**
481     * Returns a pseudorandom {@code long} value.
482     *
483 dl 1.7 * @return a pseudorandom {@code long} value
484 dl 1.1 */
485     public long nextLong() {
486     return mix64(nextSeed());
487     }
488    
489     /**
490 dl 1.7 * Returns a pseudorandom {@code long} value between zero (inclusive)
491 dl 1.1 * and the specified bound (exclusive).
492     *
493 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
494 dl 1.7 * @return a pseudorandom {@code long} value between zero
495 jsr166 1.10 * (inclusive) and the bound (exclusive)
496 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
497 dl 1.1 */
498     public long nextLong(long bound) {
499     if (bound <= 0)
500 dl 1.15 throw new IllegalArgumentException(BadBound);
501 dl 1.1 // Specialize internalNextLong for origin 0
502     long r = mix64(nextSeed());
503     long m = bound - 1;
504     if ((bound & m) == 0L) // power of two
505     r &= m;
506     else { // reject over-represented candidates
507     for (long u = r >>> 1;
508     u + m - (r = u % bound) < 0L;
509     u = mix64(nextSeed()) >>> 1)
510     ;
511     }
512     return r;
513     }
514    
515     /**
516     * Returns a pseudorandom {@code long} value between the specified
517     * origin (inclusive) and the specified bound (exclusive).
518     *
519     * @param origin the least value returned
520     * @param bound the upper bound (exclusive)
521     * @return a pseudorandom {@code long} value between the origin
522 jsr166 1.10 * (inclusive) and the bound (exclusive)
523 dl 1.7 * @throws IllegalArgumentException if {@code origin} is greater than
524 dl 1.1 * or equal to {@code bound}
525     */
526     public long nextLong(long origin, long bound) {
527     if (origin >= bound)
528 dl 1.15 throw new IllegalArgumentException(BadRange);
529 dl 1.1 return internalNextLong(origin, bound);
530     }
531    
532     /**
533 dl 1.7 * Returns a pseudorandom {@code double} value between zero
534     * (inclusive) and one (exclusive).
535 dl 1.1 *
536 dl 1.7 * @return a pseudorandom {@code double} value between zero
537 dl 1.18 * (inclusive) and one (exclusive)
538 dl 1.1 */
539     public double nextDouble() {
540 dl 1.24 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
541 dl 1.1 }
542    
543     /**
544     * Returns a pseudorandom {@code double} value between 0.0
545     * (inclusive) and the specified bound (exclusive).
546     *
547 dl 1.18 * @param bound the upper bound (exclusive). Must be positive.
548 dl 1.7 * @return a pseudorandom {@code double} value between zero
549 jsr166 1.10 * (inclusive) and the bound (exclusive)
550 dl 1.16 * @throws IllegalArgumentException if {@code bound} is not positive
551 dl 1.1 */
552     public double nextDouble(double bound) {
553 dl 1.7 if (!(bound > 0.0))
554 dl 1.15 throw new IllegalArgumentException(BadBound);
555 dl 1.24 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
556 dl 1.1 return (result < bound) ? result : // correct for rounding
557     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
558     }
559    
560     /**
561 dl 1.7 * Returns a pseudorandom {@code double} value between the specified
562 dl 1.1 * origin (inclusive) and bound (exclusive).
563     *
564     * @param origin the least value returned
565 dl 1.18 * @param bound the upper bound (exclusive)
566 dl 1.1 * @return a pseudorandom {@code double} value between the origin
567 jsr166 1.10 * (inclusive) and the bound (exclusive)
568 dl 1.1 * @throws IllegalArgumentException if {@code origin} is greater than
569     * or equal to {@code bound}
570     */
571     public double nextDouble(double origin, double bound) {
572 dl 1.7 if (!(origin < bound))
573 dl 1.15 throw new IllegalArgumentException(BadRange);
574 dl 1.1 return internalNextDouble(origin, bound);
575     }
576    
577 dl 1.11 /**
578     * Returns a pseudorandom {@code boolean} value.
579     *
580     * @return a pseudorandom {@code boolean} value
581     */
582     public boolean nextBoolean() {
583     return mix32(nextSeed()) < 0;
584     }
585    
586 dl 1.1 // stream methods, coded in a way intended to better isolate for
587     // maintenance purposes the small differences across forms.
588    
589     /**
590 dl 1.16 * Returns a stream producing the given {@code streamSize} number
591     * of pseudorandom {@code int} values from this generator and/or
592     * one split from it.
593 dl 1.1 *
594     * @param streamSize the number of values to generate
595     * @return a stream of pseudorandom {@code int} values
596     * @throws IllegalArgumentException if {@code streamSize} is
597 dl 1.7 * less than zero
598 dl 1.1 */
599     public IntStream ints(long streamSize) {
600     if (streamSize < 0L)
601 dl 1.15 throw new IllegalArgumentException(BadSize);
602 dl 1.1 return StreamSupport.intStream
603     (new RandomIntsSpliterator
604     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
605     false);
606     }
607    
608     /**
609     * Returns an effectively unlimited stream of pseudorandom {@code int}
610 dl 1.16 * values from this generator and/or one split from it.
611 dl 1.1 *
612     * @implNote This method is implemented to be equivalent to {@code
613     * ints(Long.MAX_VALUE)}.
614     *
615     * @return a stream of pseudorandom {@code int} values
616     */
617     public IntStream ints() {
618     return StreamSupport.intStream
619     (new RandomIntsSpliterator
620     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
621     false);
622     }
623    
624     /**
625 dl 1.16 * Returns a stream producing the given {@code streamSize} number
626 dl 1.18 * of pseudorandom {@code int} values from this generator and/or one split
627     * from it; each value conforms to the given origin (inclusive) and bound
628     * (exclusive).
629 dl 1.1 *
630     * @param streamSize the number of values to generate
631 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
632     * @param randomNumberBound the bound (exclusive) of each random value
633 dl 1.1 * @return a stream of pseudorandom {@code int} values,
634 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
635 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
636 dl 1.7 * less than zero, or {@code randomNumberOrigin}
637 dl 1.1 * is greater than or equal to {@code randomNumberBound}
638     */
639     public IntStream ints(long streamSize, int randomNumberOrigin,
640     int randomNumberBound) {
641     if (streamSize < 0L)
642 dl 1.15 throw new IllegalArgumentException(BadSize);
643 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
644 dl 1.15 throw new IllegalArgumentException(BadRange);
645 dl 1.1 return StreamSupport.intStream
646     (new RandomIntsSpliterator
647     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
648     false);
649     }
650    
651     /**
652     * Returns an effectively unlimited stream of pseudorandom {@code
653 dl 1.18 * int} values from this generator and/or one split from it; each value
654     * conforms to the given origin (inclusive) and bound (exclusive).
655 dl 1.1 *
656     * @implNote This method is implemented to be equivalent to {@code
657     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
658     *
659 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
660     * @param randomNumberBound the bound (exclusive) of each random value
661 dl 1.1 * @return a stream of pseudorandom {@code int} values,
662 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
663 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
664     * is greater than or equal to {@code randomNumberBound}
665     */
666     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
667     if (randomNumberOrigin >= randomNumberBound)
668 dl 1.15 throw new IllegalArgumentException(BadRange);
669 dl 1.1 return StreamSupport.intStream
670     (new RandomIntsSpliterator
671     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
672     false);
673     }
674    
675     /**
676 dl 1.16 * Returns a stream producing the given {@code streamSize} number
677     * of pseudorandom {@code long} values from this generator and/or
678     * one split from it.
679 dl 1.1 *
680     * @param streamSize the number of values to generate
681 dl 1.7 * @return a stream of pseudorandom {@code long} values
682 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
683 dl 1.7 * less than zero
684 dl 1.1 */
685     public LongStream longs(long streamSize) {
686     if (streamSize < 0L)
687 dl 1.15 throw new IllegalArgumentException(BadSize);
688 dl 1.1 return StreamSupport.longStream
689     (new RandomLongsSpliterator
690     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
691     false);
692     }
693    
694     /**
695 dl 1.16 * Returns an effectively unlimited stream of pseudorandom {@code
696     * long} values from this generator and/or one split from it.
697 dl 1.1 *
698     * @implNote This method is implemented to be equivalent to {@code
699     * longs(Long.MAX_VALUE)}.
700     *
701     * @return a stream of pseudorandom {@code long} values
702     */
703     public LongStream longs() {
704     return StreamSupport.longStream
705     (new RandomLongsSpliterator
706     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
707     false);
708     }
709    
710     /**
711 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
712 dl 1.18 * pseudorandom {@code long} values from this generator and/or one split
713     * from it; each value conforms to the given origin (inclusive) and bound
714     * (exclusive).
715 dl 1.1 *
716     * @param streamSize the number of values to generate
717 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
718     * @param randomNumberBound the bound (exclusive) of each random value
719 dl 1.1 * @return a stream of pseudorandom {@code long} values,
720 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
721 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
722 dl 1.7 * less than zero, or {@code randomNumberOrigin}
723 dl 1.1 * is greater than or equal to {@code randomNumberBound}
724     */
725     public LongStream longs(long streamSize, long randomNumberOrigin,
726     long randomNumberBound) {
727     if (streamSize < 0L)
728 dl 1.15 throw new IllegalArgumentException(BadSize);
729 dl 1.1 if (randomNumberOrigin >= randomNumberBound)
730 dl 1.15 throw new IllegalArgumentException(BadRange);
731 dl 1.1 return StreamSupport.longStream
732     (new RandomLongsSpliterator
733     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
734     false);
735     }
736    
737     /**
738     * Returns an effectively unlimited stream of pseudorandom {@code
739 dl 1.18 * long} values from this generator and/or one split from it; each value
740     * conforms to the given origin (inclusive) and bound (exclusive).
741 dl 1.1 *
742     * @implNote This method is implemented to be equivalent to {@code
743     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
744     *
745 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
746     * @param randomNumberBound the bound (exclusive) of each random value
747 dl 1.1 * @return a stream of pseudorandom {@code long} values,
748 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
749 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
750     * is greater than or equal to {@code randomNumberBound}
751     */
752     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
753     if (randomNumberOrigin >= randomNumberBound)
754 dl 1.15 throw new IllegalArgumentException(BadRange);
755 dl 1.1 return StreamSupport.longStream
756     (new RandomLongsSpliterator
757     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
758     false);
759     }
760    
761     /**
762 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
763 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
764     * from it; each value is between zero (inclusive) and one (exclusive).
765 dl 1.1 *
766     * @param streamSize the number of values to generate
767     * @return a stream of {@code double} values
768     * @throws IllegalArgumentException if {@code streamSize} is
769 dl 1.7 * less than zero
770 dl 1.1 */
771     public DoubleStream doubles(long streamSize) {
772     if (streamSize < 0L)
773 dl 1.15 throw new IllegalArgumentException(BadSize);
774 dl 1.1 return StreamSupport.doubleStream
775     (new RandomDoublesSpliterator
776     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
777     false);
778     }
779    
780     /**
781     * Returns an effectively unlimited stream of pseudorandom {@code
782 dl 1.18 * double} values from this generator and/or one split from it; each value
783     * is between zero (inclusive) and one (exclusive).
784 dl 1.1 *
785     * @implNote This method is implemented to be equivalent to {@code
786     * doubles(Long.MAX_VALUE)}.
787     *
788     * @return a stream of pseudorandom {@code double} values
789     */
790     public DoubleStream doubles() {
791     return StreamSupport.doubleStream
792     (new RandomDoublesSpliterator
793     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
794     false);
795     }
796    
797     /**
798 dl 1.7 * Returns a stream producing the given {@code streamSize} number of
799 dl 1.18 * pseudorandom {@code double} values from this generator and/or one split
800     * from it; each value conforms to the given origin (inclusive) and bound
801     * (exclusive).
802 dl 1.1 *
803     * @param streamSize the number of values to generate
804 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
805     * @param randomNumberBound the bound (exclusive) of each random value
806 dl 1.1 * @return a stream of pseudorandom {@code double} values,
807 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
808 dl 1.1 * @throws IllegalArgumentException if {@code streamSize} is
809 dl 1.18 * less than zero
810 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
811     * is greater than or equal to {@code randomNumberBound}
812     */
813     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
814     double randomNumberBound) {
815     if (streamSize < 0L)
816 dl 1.15 throw new IllegalArgumentException(BadSize);
817 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
818 dl 1.15 throw new IllegalArgumentException(BadRange);
819 dl 1.1 return StreamSupport.doubleStream
820     (new RandomDoublesSpliterator
821     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
822     false);
823     }
824    
825     /**
826     * Returns an effectively unlimited stream of pseudorandom {@code
827 dl 1.18 * double} values from this generator and/or one split from it; each value
828     * conforms to the given origin (inclusive) and bound (exclusive).
829 dl 1.1 *
830     * @implNote This method is implemented to be equivalent to {@code
831     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
832     *
833 dl 1.18 * @param randomNumberOrigin the origin (inclusive) of each random value
834     * @param randomNumberBound the bound (exclusive) of each random value
835 dl 1.1 * @return a stream of pseudorandom {@code double} values,
836 dl 1.18 * each with the given origin (inclusive) and bound (exclusive)
837 dl 1.1 * @throws IllegalArgumentException if {@code randomNumberOrigin}
838     * is greater than or equal to {@code randomNumberBound}
839     */
840     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
841 dl 1.7 if (!(randomNumberOrigin < randomNumberBound))
842 dl 1.15 throw new IllegalArgumentException(BadRange);
843 dl 1.1 return StreamSupport.doubleStream
844     (new RandomDoublesSpliterator
845     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
846     false);
847     }
848    
849     /**
850     * Spliterator for int streams. We multiplex the four int
851 dl 1.7 * versions into one class by treating a bound less than origin as
852 dl 1.1 * unbounded, and also by treating "infinite" as equivalent to
853     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
854     * approach. The long and double versions of this class are
855     * identical except for types.
856     */
857 dl 1.11 static final class RandomIntsSpliterator implements Spliterator.OfInt {
858 dl 1.1 final SplittableRandom rng;
859     long index;
860     final long fence;
861     final int origin;
862     final int bound;
863     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
864     int origin, int bound) {
865     this.rng = rng; this.index = index; this.fence = fence;
866     this.origin = origin; this.bound = bound;
867     }
868    
869     public RandomIntsSpliterator trySplit() {
870     long i = index, m = (i + fence) >>> 1;
871     return (m <= i) ? null :
872     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
873     }
874    
875     public long estimateSize() {
876     return fence - index;
877     }
878    
879     public int characteristics() {
880     return (Spliterator.SIZED | Spliterator.SUBSIZED |
881 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
882 dl 1.1 }
883    
884     public boolean tryAdvance(IntConsumer consumer) {
885     if (consumer == null) throw new NullPointerException();
886     long i = index, f = fence;
887     if (i < f) {
888     consumer.accept(rng.internalNextInt(origin, bound));
889     index = i + 1;
890     return true;
891     }
892     return false;
893     }
894    
895     public void forEachRemaining(IntConsumer consumer) {
896     if (consumer == null) throw new NullPointerException();
897     long i = index, f = fence;
898     if (i < f) {
899     index = f;
900 dl 1.15 SplittableRandom r = rng;
901 dl 1.1 int o = origin, b = bound;
902     do {
903 dl 1.15 consumer.accept(r.internalNextInt(o, b));
904 dl 1.1 } while (++i < f);
905     }
906     }
907     }
908    
909     /**
910     * Spliterator for long streams.
911     */
912 dl 1.11 static final class RandomLongsSpliterator implements Spliterator.OfLong {
913 dl 1.1 final SplittableRandom rng;
914     long index;
915     final long fence;
916     final long origin;
917     final long bound;
918     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
919     long origin, long bound) {
920     this.rng = rng; this.index = index; this.fence = fence;
921     this.origin = origin; this.bound = bound;
922     }
923    
924     public RandomLongsSpliterator trySplit() {
925     long i = index, m = (i + fence) >>> 1;
926     return (m <= i) ? null :
927     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
928     }
929    
930     public long estimateSize() {
931     return fence - index;
932     }
933    
934     public int characteristics() {
935     return (Spliterator.SIZED | Spliterator.SUBSIZED |
936 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
937 dl 1.1 }
938    
939     public boolean tryAdvance(LongConsumer consumer) {
940     if (consumer == null) throw new NullPointerException();
941     long i = index, f = fence;
942     if (i < f) {
943     consumer.accept(rng.internalNextLong(origin, bound));
944     index = i + 1;
945     return true;
946     }
947     return false;
948     }
949    
950     public void forEachRemaining(LongConsumer consumer) {
951     if (consumer == null) throw new NullPointerException();
952     long i = index, f = fence;
953     if (i < f) {
954     index = f;
955 dl 1.15 SplittableRandom r = rng;
956 dl 1.1 long o = origin, b = bound;
957     do {
958 dl 1.15 consumer.accept(r.internalNextLong(o, b));
959 dl 1.1 } while (++i < f);
960     }
961     }
962    
963     }
964    
965     /**
966     * Spliterator for double streams.
967     */
968 dl 1.11 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
969 dl 1.1 final SplittableRandom rng;
970     long index;
971     final long fence;
972     final double origin;
973     final double bound;
974     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
975     double origin, double bound) {
976     this.rng = rng; this.index = index; this.fence = fence;
977     this.origin = origin; this.bound = bound;
978     }
979    
980     public RandomDoublesSpliterator trySplit() {
981     long i = index, m = (i + fence) >>> 1;
982     return (m <= i) ? null :
983     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
984     }
985    
986     public long estimateSize() {
987     return fence - index;
988     }
989    
990     public int characteristics() {
991     return (Spliterator.SIZED | Spliterator.SUBSIZED |
992 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
993 dl 1.1 }
994    
995     public boolean tryAdvance(DoubleConsumer consumer) {
996     if (consumer == null) throw new NullPointerException();
997     long i = index, f = fence;
998     if (i < f) {
999     consumer.accept(rng.internalNextDouble(origin, bound));
1000     index = i + 1;
1001     return true;
1002     }
1003     return false;
1004     }
1005    
1006     public void forEachRemaining(DoubleConsumer consumer) {
1007     if (consumer == null) throw new NullPointerException();
1008     long i = index, f = fence;
1009     if (i < f) {
1010     index = f;
1011 dl 1.15 SplittableRandom r = rng;
1012 dl 1.1 double o = origin, b = bound;
1013     do {
1014 dl 1.15 consumer.accept(r.internalNextDouble(o, b));
1015 dl 1.1 } while (++i < f);
1016     }
1017     }
1018     }
1019    
1020     }