ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.3
Committed: Thu Jul 11 03:31:26 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.2: +1 -1 lines
Log Message:
typo

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.util.concurrent.atomic.AtomicLong;
29     import java.util.Spliterator;
30     import java.util.function.IntConsumer;
31     import java.util.function.LongConsumer;
32     import java.util.function.DoubleConsumer;
33     import java.util.stream.StreamSupport;
34     import java.util.stream.IntStream;
35     import java.util.stream.LongStream;
36     import java.util.stream.DoubleStream;
37    
38    
39     /**
40     * A generator of uniform pseudorandom values applicable for use in
41     * (among other contexts) isolated parallel computations that may
42     * generate subtasks. Class SplittableRandom supports methods for
43 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
44 dl 1.1 * and {@code double} with similar usages as for class
45     * {@link java.util.Random} but differs in the following ways: <ul>
46     *
47     * <li>Series of generated values pass the DieHarder suite testing
48     * independence and uniformity properties of random number generators.
49     * (Most recently validated with <a
50     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51     * 3.31.1</a>.) These tests validate only the methods for certain
52     * types and ranges, but similar properties are expected to hold, at
53     * least approximately, for others as well. </li>
54     *
55     * <li> Method {@link #split} constructs and returns a new
56     * SplittableRandom instance that shares no mutable state with the
57     * current instance. However, with very high probability, the set of
58     * values collectively generated by the two objects has the same
59     * statistical properties as if the same quantity of values were
60     * generated by a single thread using a single {@code
61     * SplittableRandom} object. </li>
62     *
63     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
64     * They are designed to be split, not shared, across threads. For
65     * example, a {@link java.util.concurrent.ForkJoinTask
66     * fork/join-style} computation using random numbers might include a
67     * construction of the form {@code new
68     * Subtask(aSplittableRandom.split()).fork()}.
69     *
70     * <li>This class provides additional methods for generating random
71     * streams, that employ the above techniques when used in {@code
72     * stream.parallel()} mode.</li>
73     *
74     * </ul>
75     *
76     * @author Guy Steele
77 dl 1.2 * @author Doug Lea
78 dl 1.1 * @since 1.8
79     */
80     public class SplittableRandom {
81    
82     /*
83     * File organization: First the non-public methods that constitute
84     * the main algorithm, then the main public methods, followed by
85     * some custom spliterator classes needed for stream methods.
86     *
87     * Credits: Primary algorithm and code by Guy Steele. Stream
88     * support methods by Doug Lea. Documentation jointly produced
89     * with additional help from Brian Goetz.
90     */
91    
92     /*
93     * Implementation Overview.
94     *
95     * This algorithm was inspired by the "DotMix" algorithm by
96     * Leiserson, Schardl, and Sukha "Deterministic Parallel
97     * Random-Number Generation for Dynamic-Multithreading Platforms",
98     * PPoPP 2012, but improves and extends it in several ways.
99     *
100     * The primary update step is simply to add a constant ("gamma")
101     * to the current seed, modulo a prime ("George"). However, the
102     * nextLong and nextInt methods do not return this value, but
103     * instead the results of bit-mixing transformations that produce
104     * more uniformly distributed sequences.
105     *
106     * "George" is the otherwise nameless (because it cannot be
107     * represented) prime number 2^64+13. Using a prime number larger
108     * than can fit in a long ensures that all possible long values
109     * can occur, plus 13 others that just get skipped over when they
110     * are encountered; see method addGammaModGeorge. For this to
111     * work, initial gamma values must be at least 13.
112     *
113     * The value of gamma differs for each instance across a series of
114     * splits, and is generated using a slightly stripped-down variant
115     * of the same algorithm, but operating across calls to split(),
116 dl 1.2 * not calls to nextSeed(): Each instance carries the state of
117 dl 1.1 * this generator as nextSplit, and uses mix64(nextSplit) as its
118     * own gamma value. Computations of gammas themselves use a fixed
119     * constant as the second argument to the addGammaModGeorge
120     * function, GAMMA_GAMMA, a "genuinely random" number from a
121     * radioactive decay reading (obtained from
122     * http://www.fourmilab.ch/hotbits/) meeting the above range
123     * constraint. Using a fixed constant maintains the invariant that
124     * the value of gamma is the same for every instance that is at
125     * the same split-distance from their common root. (Note: there is
126     * nothing especially magic about obtaining this constant from a
127     * "truly random" physical source rather than just choosing one
128     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129     * choice. In either case, good statistical behavior of the
130     * algorithm should be, and was, verified by using the DieHarder
131     * test suite.)
132     *
133     * The mix64 bit-mixing function called by nextLong and other
134     * methods computes the same value as the "64-bit finalizer"
135     * function in Austin Appleby's MurmurHash3 algorithm. See
136     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
137     * comments: "The constants for the finalizers were generated by a
138     * simple simulated-annealing algorithm, and both avalanche all
139     * bits of 'h' to within 0.25% bias." It also appears to work to
140     * use instead any of the variants proposed by David Stafford at
141     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
142     * but these variants have not yet been tested as thoroughly
143     * in the context of the implementation of SplittableRandom.
144     *
145     * The mix32 function used for nextInt just consists of two of the
146     * five lines of mix64; avalanche testing shows that the 64-bit result
147     * has its top 32 bits avalanched well, though not the bottom 32 bits.
148     * DieHarder tests show that it is adequate for generating one
149     * random int from the 64-bit result of nextSeed.
150     *
151     * Support for the default (no-argument) constructor relies on an
152     * AtomicLong (defaultSeedGenerator) to help perform the
153     * equivalent of a split of a statically constructed
154     * SplittableRandom. Unlike other cases, this split must be
155     * performed in a thread-safe manner. We use
156     * AtomicLong.compareAndSet as the (typically) most efficient
157     * mechanism. To bootstrap, we start off using System.nanotime(),
158     * and update using another "genuinely random" constant
159     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
160     * not 0, for its splitSeed argument (addGammaModGeorge(0,
161     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
162     * this root generator, even though the root is not explicitly
163     * represented as a SplittableRandom.
164     */
165    
166     /**
167     * The "genuinely random" value for producing new gamma values.
168     * The value is arbitrary, subject to the requirement that it be
169     * greater or equal to 13.
170     */
171     private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172    
173     /**
174     * The "genuinely random" seed update value for default constructors.
175     * The value is arbitrary, subject to the requirement that it be
176     * greater or equal to 13.
177     */
178     private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
179    
180     /**
181     * The next seed for default constructors.
182     */
183     private static final AtomicLong defaultSeedGenerator =
184     new AtomicLong(System.nanoTime());
185    
186     /**
187     * The seed, updated only via method nextSeed.
188     */
189     private long seed;
190    
191     /**
192     * The constant value added to seed (mod George) on each update.
193     */
194     private final long gamma;
195    
196     /**
197     * The next seed to use for splits. Propagated using
198     * addGammaModGeorge across instances.
199     */
200     private final long nextSplit;
201    
202     /**
203     * Internal constructor used by all other constructors and by
204     * method split. Establishes the initial seed for this instance,
205     * and uses the given splitSeed to establish gamma, as well as the
206     * nextSplit to use by this instance.
207     */
208     private SplittableRandom(long seed, long splitSeed) {
209     this.seed = seed;
210     long s = splitSeed, g;
211     do { // ensure gamma >= 13, considered as an unsigned integer
212     s = addGammaModGeorge(s, GAMMA_GAMMA);
213     g = mix64(s);
214     } while (Long.compareUnsigned(g, 13L) < 0);
215     this.gamma = g;
216     this.nextSplit = s;
217     }
218    
219     /**
220     * Adds the given gamma value, g, to the given seed value s, mod
221     * George (2^64+13). We regard s and g as unsigned values
222     * (ranging from 0 to 2^64-1). We add g to s either once or twice
223     * (mod George) as necessary to produce an (unsigned) result less
224     * than 2^64. We require that g must be at least 13. This
225     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
226     * George < 2^64; thus we need only a conditional, not a loop,
227     * to be sure of getting a representable value.
228     *
229     * @param s a seed value
230     * @param g a gamma value, 13 <= g (as unsigned)
231     */
232     private static long addGammaModGeorge(long s, long g) {
233     long p = s + g;
234     if (Long.compareUnsigned(p, g) >= 0)
235     return p;
236     long q = p - 13L;
237     return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
238     }
239    
240     /**
241     * Updates in-place and returns seed.
242     * See above for explanation.
243     */
244     private long nextSeed() {
245     return seed = addGammaModGeorge(seed, gamma);
246     }
247    
248     /**
249     * Returns a bit-mixed transformation of its argument.
250     * See above for explanation.
251     */
252     private static long mix64(long z) {
253     z ^= (z >>> 33);
254     z *= 0xff51afd7ed558ccdL;
255     z ^= (z >>> 33);
256     z *= 0xc4ceb9fe1a85ec53L;
257     z ^= (z >>> 33);
258     return z;
259     }
260    
261     /**
262     * Returns a bit-mixed int transformation of its argument.
263     * See above for explanation.
264     */
265     private static int mix32(long z) {
266     z ^= (z >>> 33);
267     z *= 0xc4ceb9fe1a85ec53L;
268     return (int)(z >>> 32);
269     }
270    
271     /**
272     * Atomically updates and returns next seed for default constructor
273     */
274     private static long nextDefaultSeed() {
275     long oldSeed, newSeed;
276     do {
277     oldSeed = defaultSeedGenerator.get();
278     newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
279     } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
280     return mix64(newSeed);
281     }
282    
283     /*
284     * Internal versions of nextX methods used by streams, as well as
285     * the public nextX(origin, bound) methods. These exist mainly to
286     * avoid the need for multiple versions of stream spliterators
287     * across the different exported forms of streams.
288     */
289    
290     /**
291     * The form of nextLong used by LongStream Spliterators. If
292     * origin is greater than bound, acts as unbounded form of
293     * nextLong, else as bounded form.
294     *
295     * @param origin the least value, unless greater than bound
296     * @param bound the upper bound (exclusive), must not equal origin
297     * @return a pseudorandom value
298     */
299     final long internalNextLong(long origin, long bound) {
300     /*
301     * Four Cases:
302     *
303     * 1. If the arguments indicate unbounded form, act as
304     * nextLong().
305     *
306     * 2. If the range is an exact power of two, apply the
307     * associated bit mask.
308     *
309     * 3. If the range is positive, loop to avoid potential bias
310     * when the implicit nextLong() bound (2<sup>64</sup>) is not
311     * evenly divisible by the range. The loop rejects candidates
312     * computed from otherwise over-represented values. The
313     * expected number of iterations under an ideal generator
314     * varies from 1 to 2, depending on the bound.
315     *
316     * 4. Otherwise, the range cannot be represented as a positive
317     * long. Repeatedly generate unbounded longs until obtaining
318     * a candidate meeting constraints (with an expected number of
319     * iterations of less than two).
320     */
321    
322     long r = mix64(nextSeed());
323     if (origin < bound) {
324     long n = bound - origin, m = n - 1;
325     if ((n & m) == 0L) // power of two
326     r = (r & m) + origin;
327     else if (n > 0) { // reject over-represented candidates
328     for (long u = r >>> 1; // ensure nonnegative
329     u + m - (r = u % n) < 0L; // reject
330     u = mix64(nextSeed()) >>> 1) // retry
331     ;
332     r += origin;
333     }
334     else { // range not representable as long
335     while (r < origin || r >= bound)
336     r = mix64(nextSeed());
337     }
338     }
339     return r;
340     }
341    
342     /**
343     * The form of nextInt used by IntStream Spliterators.
344     * Exactly the same as long version, except for types.
345     *
346     * @param origin the least value, unless greater than bound
347     * @param bound the upper bound (exclusive), must not equal origin
348     * @return a pseudorandom value
349     */
350     final int internalNextInt(int origin, int bound) {
351     int r = mix32(nextSeed());
352     if (origin < bound) {
353     int n = bound - origin, m = n - 1;
354     if ((n & m) == 0L)
355     r = (r & m) + origin;
356     else if (n > 0) {
357     for (int u = r >>> 1;
358     u + m - (r = u % n) < 0L;
359     u = mix32(nextSeed()) >>> 1)
360     ;
361     r += origin;
362     }
363     else {
364     while (r < origin || r >= bound)
365     r = mix32(nextSeed());
366     }
367     }
368     return r;
369     }
370    
371     /**
372     * The form of nextDouble used by DoubleStream Spliterators.
373     *
374     * @param origin the least value, unless greater than bound
375     * @param bound the upper bound (exclusive), must not equal origin
376     * @return a pseudorandom value
377     */
378     final double internalNextDouble(double origin, double bound) {
379     long bits = (1023L << 52) | (nextLong() >>> 12);
380     double r = Double.longBitsToDouble(bits) - 1.0;
381     if (origin < bound) {
382     r = r * (bound - origin) + origin;
383     if (r == bound) // correct for rounding
384     r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
385     }
386     return r;
387     }
388    
389     /* ---------------- public methods ---------------- */
390    
391     /**
392     * Creates a new SplittableRandom instance using the given initial
393     * seed. Two SplittableRandom instances created with the same seed
394     * generate identical sequences of values.
395     *
396     * @param seed the initial seed
397     */
398     public SplittableRandom(long seed) {
399     this(seed, 0);
400     }
401    
402     /**
403     * Creates a new SplittableRandom instance that is likely to
404     * generate sequences of values that are statistically independent
405     * of those of any other instances in the current program; and
406     * may, and typically does, vary across program invocations.
407     */
408     public SplittableRandom() {
409     this(nextDefaultSeed(), GAMMA_GAMMA);
410     }
411    
412     /**
413     * Constructs and returns a new SplittableRandom instance that
414     * shares no mutable state with this instance. However, with very
415     * high probability, the set of values collectively generated by
416     * the two objects has the same statistical properties as if the
417     * same quantity of values were generated by a single thread using
418     * a single SplittableRandom object. Either or both of the two
419     * objects may be further split using the {@code split()} method,
420     * and the same expected statistical properties apply to the
421     * entire set of generators constructed by such recursive
422     * splitting.
423     *
424     * @return the new SplittableRandom instance
425     */
426     public SplittableRandom split() {
427     return new SplittableRandom(nextSeed(), nextSplit);
428     }
429    
430     /**
431     * Returns a pseudorandom {@code int} value.
432     *
433     * @return a pseudorandom value
434     */
435     public int nextInt() {
436     return mix32(nextSeed());
437     }
438    
439     /**
440     * Returns a pseudorandom {@code int} value between 0 (inclusive)
441     * and the specified bound (exclusive).
442     *
443     * @param bound the bound on the random number to be returned. Must be
444     * positive.
445     * @return a pseudorandom {@code int} value between {@code 0}
446     * (inclusive) and the bound (exclusive).
447     * @exception IllegalArgumentException if the bound is not positive
448     */
449     public int nextInt(int bound) {
450     if (bound <= 0)
451     throw new IllegalArgumentException("bound must be positive");
452     // Specialize internalNextInt for origin 0
453     int r = mix32(nextSeed());
454     int m = bound - 1;
455     if ((bound & m) == 0L) // power of two
456     r &= m;
457     else { // reject over-represented candidates
458     for (int u = r >>> 1;
459     u + m - (r = u % bound) < 0L;
460     u = mix32(nextSeed()) >>> 1)
461     ;
462     }
463     return r;
464     }
465    
466     /**
467     * Returns a pseudorandom {@code int} value between the specified
468     * origin (inclusive) and the specified bound (exclusive).
469     *
470     * @param origin the least value returned
471     * @param bound the upper bound (exclusive)
472     * @return a pseudorandom {@code int} value between the origin
473     * (inclusive) and the bound (exclusive).
474     * @exception IllegalArgumentException if {@code origin} is greater than
475     * or equal to {@code bound}
476     */
477     public int nextInt(int origin, int bound) {
478     if (origin >= bound)
479     throw new IllegalArgumentException("bound must be greater than origin");
480     return internalNextInt(origin, bound);
481     }
482    
483     /**
484     * Returns a pseudorandom {@code long} value.
485     *
486     * @return a pseudorandom value
487     */
488     public long nextLong() {
489     return mix64(nextSeed());
490     }
491    
492     /**
493     * Returns a pseudorandom {@code long} value between 0 (inclusive)
494     * and the specified bound (exclusive).
495     *
496     * @param bound the bound on the random number to be returned. Must be
497     * positive.
498     * @return a pseudorandom {@code long} value between {@code 0}
499     * (inclusive) and the bound (exclusive).
500     * @exception IllegalArgumentException if the bound is not positive
501     */
502     public long nextLong(long bound) {
503     if (bound <= 0)
504     throw new IllegalArgumentException("bound must be positive");
505     // Specialize internalNextLong for origin 0
506     long r = mix64(nextSeed());
507     long m = bound - 1;
508     if ((bound & m) == 0L) // power of two
509     r &= m;
510     else { // reject over-represented candidates
511     for (long u = r >>> 1;
512     u + m - (r = u % bound) < 0L;
513     u = mix64(nextSeed()) >>> 1)
514     ;
515     }
516     return r;
517     }
518    
519     /**
520     * Returns a pseudorandom {@code long} value between the specified
521     * origin (inclusive) and the specified bound (exclusive).
522     *
523     * @param origin the least value returned
524     * @param bound the upper bound (exclusive)
525     * @return a pseudorandom {@code long} value between the origin
526     * (inclusive) and the bound (exclusive).
527     * @exception IllegalArgumentException if {@code origin} is greater than
528     * or equal to {@code bound}
529     */
530     public long nextLong(long origin, long bound) {
531     if (origin >= bound)
532     throw new IllegalArgumentException("bound must be greater than origin");
533     return internalNextLong(origin, bound);
534     }
535    
536     /**
537     * Returns a pseudorandom {@code double} value between {@code 0.0}
538     * (inclusive) and {@code 1.0} (exclusive).
539     *
540     * @return a pseudorandom value between {@code 0.0}
541     * (inclusive) and {@code 1.0} (exclusive)
542     */
543     public double nextDouble() {
544     long bits = (1023L << 52) | (nextLong() >>> 12);
545     return Double.longBitsToDouble(bits) - 1.0;
546     }
547    
548     /**
549     * Returns a pseudorandom {@code double} value between 0.0
550     * (inclusive) and the specified bound (exclusive).
551     *
552     * @param bound the bound on the random number to be returned. Must be
553     * positive.
554     * @return a pseudorandom {@code double} value between {@code 0.0}
555     * (inclusive) and the bound (exclusive).
556     * @throws IllegalArgumentException if {@code bound} is not positive
557     */
558     public double nextDouble(double bound) {
559     if (bound <= 0.0)
560     throw new IllegalArgumentException("bound must be positive");
561     double result = nextDouble() * bound;
562     return (result < bound) ? result : // correct for rounding
563     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
564     }
565    
566     /**
567     * Returns a pseudorandom {@code double} value between the given
568     * origin (inclusive) and bound (exclusive).
569     *
570     * @param origin the least value returned
571     * @param bound the upper bound
572     * @return a pseudorandom {@code double} value between the origin
573     * (inclusive) and the bound (exclusive).
574     * @throws IllegalArgumentException if {@code origin} is greater than
575     * or equal to {@code bound}
576     */
577     public double nextDouble(double origin, double bound) {
578     if (origin >= bound)
579     throw new IllegalArgumentException("bound must be greater than origin");
580     return internalNextDouble(origin, bound);
581     }
582    
583     // stream methods, coded in a way intended to better isolate for
584     // maintenance purposes the small differences across forms.
585    
586     /**
587     * Returns a stream with the given {@code streamSize} number of
588     * pseudorandom {@code int} values.
589     *
590     * @param streamSize the number of values to generate
591     * @return a stream of pseudorandom {@code int} values
592     * @throws IllegalArgumentException if {@code streamSize} is
593     * less than zero
594     */
595     public IntStream ints(long streamSize) {
596     if (streamSize < 0L)
597     throw new IllegalArgumentException("negative Stream size");
598     return StreamSupport.intStream
599     (new RandomIntsSpliterator
600     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
601     false);
602     }
603    
604     /**
605     * Returns an effectively unlimited stream of pseudorandom {@code int}
606     * values
607     *
608     * @implNote This method is implemented to be equivalent to {@code
609     * ints(Long.MAX_VALUE)}.
610     *
611     * @return a stream of pseudorandom {@code int} values
612     */
613     public IntStream ints() {
614     return StreamSupport.intStream
615     (new RandomIntsSpliterator
616     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
617     false);
618     }
619    
620     /**
621     * Returns a stream with the given {@code streamSize} number of
622     * pseudorandom {@code int} values, each conforming to the given
623     * origin and bound.
624     *
625     * @param streamSize the number of values to generate
626     * @param randomNumberOrigin the origin of each random value
627     * @param randomNumberBound the bound of each random value
628     * @return a stream of pseudorandom {@code int} values,
629     * each with the given origin and bound.
630     * @throws IllegalArgumentException if {@code streamSize} is
631     * less than zero.
632     * @throws IllegalArgumentException if {@code randomNumberOrigin}
633     * is greater than or equal to {@code randomNumberBound}
634     */
635     public IntStream ints(long streamSize, int randomNumberOrigin,
636     int randomNumberBound) {
637     if (streamSize < 0L)
638     throw new IllegalArgumentException("negative Stream size");
639     if (randomNumberOrigin >= randomNumberBound)
640     throw new IllegalArgumentException("bound must be greater than origin");
641     return StreamSupport.intStream
642     (new RandomIntsSpliterator
643     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
644     false);
645     }
646    
647     /**
648     * Returns an effectively unlimited stream of pseudorandom {@code
649     * int} values, each conforming to the given origin and bound.
650     *
651     * @implNote This method is implemented to be equivalent to {@code
652     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
653     *
654     * @param randomNumberOrigin the origin of each random value
655     * @param randomNumberBound the bound of each random value
656     * @return a stream of pseudorandom {@code int} values,
657     * each with the given origin and bound.
658     * @throws IllegalArgumentException if {@code randomNumberOrigin}
659     * is greater than or equal to {@code randomNumberBound}
660     */
661     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
662     if (randomNumberOrigin >= randomNumberBound)
663     throw new IllegalArgumentException("bound must be greater than origin");
664     return StreamSupport.intStream
665     (new RandomIntsSpliterator
666     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
667     false);
668     }
669    
670     /**
671     * Returns a stream with the given {@code streamSize} number of
672     * pseudorandom {@code long} values.
673     *
674     * @param streamSize the number of values to generate
675     * @return a stream of {@code long} values
676     * @throws IllegalArgumentException if {@code streamSize} is
677     * less than zero
678     */
679     public LongStream longs(long streamSize) {
680     if (streamSize < 0L)
681     throw new IllegalArgumentException("negative Stream size");
682     return StreamSupport.longStream
683     (new RandomLongsSpliterator
684     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
685     false);
686     }
687    
688     /**
689     * Returns an effectively unlimited stream of pseudorandom {@code long}
690     * values.
691     *
692     * @implNote This method is implemented to be equivalent to {@code
693     * longs(Long.MAX_VALUE)}.
694     *
695     * @return a stream of pseudorandom {@code long} values
696     */
697     public LongStream longs() {
698     return StreamSupport.longStream
699     (new RandomLongsSpliterator
700     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
701     false);
702     }
703    
704     /**
705     * Returns a stream with the given {@code streamSize} number of
706     * pseudorandom {@code long} values, each conforming to the
707     * given origin and bound.
708     *
709     * @param streamSize the number of values to generate
710     * @param randomNumberOrigin the origin of each random value
711     * @param randomNumberBound the bound of each random value
712     * @return a stream of pseudorandom {@code long} values,
713     * each with the given origin and bound.
714     * @throws IllegalArgumentException if {@code streamSize} is
715     * less than zero.
716     * @throws IllegalArgumentException if {@code randomNumberOrigin}
717     * is greater than or equal to {@code randomNumberBound}
718     */
719     public LongStream longs(long streamSize, long randomNumberOrigin,
720     long randomNumberBound) {
721     if (streamSize < 0L)
722     throw new IllegalArgumentException("negative Stream size");
723     if (randomNumberOrigin >= randomNumberBound)
724     throw new IllegalArgumentException("bound must be greater than origin");
725     return StreamSupport.longStream
726     (new RandomLongsSpliterator
727     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
728     false);
729     }
730    
731     /**
732     * Returns an effectively unlimited stream of pseudorandom {@code
733     * long} values, each conforming to the given origin and bound.
734     *
735     * @implNote This method is implemented to be equivalent to {@code
736     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
737     *
738     * @param randomNumberOrigin the origin of each random value
739     * @param randomNumberBound the bound of each random value
740     * @return a stream of pseudorandom {@code long} values,
741     * each with the given origin and bound.
742     * @throws IllegalArgumentException if {@code randomNumberOrigin}
743     * is greater than or equal to {@code randomNumberBound}
744     */
745     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
746     if (randomNumberOrigin >= randomNumberBound)
747     throw new IllegalArgumentException("bound must be greater than origin");
748     return StreamSupport.longStream
749     (new RandomLongsSpliterator
750     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
751     false);
752     }
753    
754     /**
755     * Returns a stream with the given {@code streamSize} number of
756 dl 1.2 * pseudorandom {@code double} values, each between {@code 0.0}
757     * (inclusive) and {@code 1.0} (exclusive).
758 dl 1.1 *
759     * @param streamSize the number of values to generate
760     * @return a stream of {@code double} values
761     * @throws IllegalArgumentException if {@code streamSize} is
762     * less than zero
763     */
764     public DoubleStream doubles(long streamSize) {
765     if (streamSize < 0L)
766     throw new IllegalArgumentException("negative Stream size");
767     return StreamSupport.doubleStream
768     (new RandomDoublesSpliterator
769     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
770     false);
771     }
772    
773     /**
774     * Returns an effectively unlimited stream of pseudorandom {@code
775 dl 1.2 * double} values, each between {@code 0.0} (inclusive) and {@code
776     * 1.0} (exclusive).
777 dl 1.1 *
778     * @implNote This method is implemented to be equivalent to {@code
779     * doubles(Long.MAX_VALUE)}.
780     *
781     * @return a stream of pseudorandom {@code double} values
782     */
783     public DoubleStream doubles() {
784     return StreamSupport.doubleStream
785     (new RandomDoublesSpliterator
786     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
787     false);
788     }
789    
790     /**
791     * Returns a stream with the given {@code streamSize} number of
792     * pseudorandom {@code double} values, each conforming to the
793     * given origin and bound.
794     *
795     * @param streamSize the number of values to generate
796     * @param randomNumberOrigin the origin of each random value
797     * @param randomNumberBound the bound of each random value
798     * @return a stream of pseudorandom {@code double} values,
799     * each with the given origin and bound.
800     * @throws IllegalArgumentException if {@code streamSize} is
801     * less than zero.
802     * @throws IllegalArgumentException if {@code randomNumberOrigin}
803     * is greater than or equal to {@code randomNumberBound}
804     */
805     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
806     double randomNumberBound) {
807     if (streamSize < 0L)
808     throw new IllegalArgumentException("negative Stream size");
809     if (randomNumberOrigin >= randomNumberBound)
810     throw new IllegalArgumentException("bound must be greater than origin");
811     return StreamSupport.doubleStream
812     (new RandomDoublesSpliterator
813     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
814     false);
815     }
816    
817     /**
818     * Returns an effectively unlimited stream of pseudorandom {@code
819     * double} values, each conforming to the given origin and bound.
820     *
821     * @implNote This method is implemented to be equivalent to {@code
822     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
823     *
824     * @param randomNumberOrigin the origin of each random value
825     * @param randomNumberBound the bound of each random value
826     * @return a stream of pseudorandom {@code double} values,
827     * each with the given origin and bound.
828     * @throws IllegalArgumentException if {@code randomNumberOrigin}
829     * is greater than or equal to {@code randomNumberBound}
830     */
831     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
832     if (randomNumberOrigin >= randomNumberBound)
833     throw new IllegalArgumentException("bound must be greater than origin");
834     return StreamSupport.doubleStream
835     (new RandomDoublesSpliterator
836     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
837     false);
838     }
839    
840     /**
841     * Spliterator for int streams. We multiplex the four int
842     * versions into one class by treating and bound < origin as
843     * unbounded, and also by treating "infinite" as equivalent to
844     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
845     * approach. The long and double versions of this class are
846     * identical except for types.
847     */
848     static class RandomIntsSpliterator implements Spliterator.OfInt {
849     final SplittableRandom rng;
850     long index;
851     final long fence;
852     final int origin;
853     final int bound;
854     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
855     int origin, int bound) {
856     this.rng = rng; this.index = index; this.fence = fence;
857     this.origin = origin; this.bound = bound;
858     }
859    
860     public RandomIntsSpliterator trySplit() {
861     long i = index, m = (i + fence) >>> 1;
862     return (m <= i) ? null :
863     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
864     }
865    
866     public long estimateSize() {
867     return fence - index;
868     }
869    
870     public int characteristics() {
871     return (Spliterator.SIZED | Spliterator.SUBSIZED |
872     Spliterator.ORDERED | Spliterator.NONNULL |
873     Spliterator.IMMUTABLE);
874     }
875    
876     public boolean tryAdvance(IntConsumer consumer) {
877     if (consumer == null) throw new NullPointerException();
878     long i = index, f = fence;
879     if (i < f) {
880     consumer.accept(rng.internalNextInt(origin, bound));
881     index = i + 1;
882     return true;
883     }
884     return false;
885     }
886    
887     public void forEachRemaining(IntConsumer consumer) {
888     if (consumer == null) throw new NullPointerException();
889     long i = index, f = fence;
890     if (i < f) {
891     index = f;
892     int o = origin, b = bound;
893     do {
894     consumer.accept(rng.internalNextInt(o, b));
895     } while (++i < f);
896     }
897     }
898     }
899    
900     /**
901     * Spliterator for long streams.
902     */
903     static class RandomLongsSpliterator implements Spliterator.OfLong {
904     final SplittableRandom rng;
905     long index;
906     final long fence;
907     final long origin;
908     final long bound;
909     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
910     long origin, long bound) {
911     this.rng = rng; this.index = index; this.fence = fence;
912     this.origin = origin; this.bound = bound;
913     }
914    
915     public RandomLongsSpliterator trySplit() {
916     long i = index, m = (i + fence) >>> 1;
917     return (m <= i) ? null :
918     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
919     }
920    
921     public long estimateSize() {
922     return fence - index;
923     }
924    
925     public int characteristics() {
926     return (Spliterator.SIZED | Spliterator.SUBSIZED |
927     Spliterator.ORDERED | Spliterator.NONNULL |
928     Spliterator.IMMUTABLE);
929     }
930    
931     public boolean tryAdvance(LongConsumer consumer) {
932     if (consumer == null) throw new NullPointerException();
933     long i = index, f = fence;
934     if (i < f) {
935     consumer.accept(rng.internalNextLong(origin, bound));
936     index = i + 1;
937     return true;
938     }
939     return false;
940     }
941    
942     public void forEachRemaining(LongConsumer consumer) {
943     if (consumer == null) throw new NullPointerException();
944     long i = index, f = fence;
945     if (i < f) {
946     index = f;
947     long o = origin, b = bound;
948     do {
949     consumer.accept(rng.internalNextLong(o, b));
950     } while (++i < f);
951     }
952     }
953    
954     }
955    
956     /**
957     * Spliterator for double streams.
958     */
959     static class RandomDoublesSpliterator implements Spliterator.OfDouble {
960     final SplittableRandom rng;
961     long index;
962     final long fence;
963     final double origin;
964     final double bound;
965     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
966     double origin, double bound) {
967     this.rng = rng; this.index = index; this.fence = fence;
968     this.origin = origin; this.bound = bound;
969     }
970    
971     public RandomDoublesSpliterator trySplit() {
972     long i = index, m = (i + fence) >>> 1;
973     return (m <= i) ? null :
974     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
975     }
976    
977     public long estimateSize() {
978     return fence - index;
979     }
980    
981     public int characteristics() {
982     return (Spliterator.SIZED | Spliterator.SUBSIZED |
983     Spliterator.ORDERED | Spliterator.NONNULL |
984     Spliterator.IMMUTABLE);
985     }
986    
987     public boolean tryAdvance(DoubleConsumer consumer) {
988     if (consumer == null) throw new NullPointerException();
989     long i = index, f = fence;
990     if (i < f) {
991     consumer.accept(rng.internalNextDouble(origin, bound));
992     index = i + 1;
993     return true;
994     }
995     return false;
996     }
997    
998     public void forEachRemaining(DoubleConsumer consumer) {
999     if (consumer == null) throw new NullPointerException();
1000     long i = index, f = fence;
1001     if (i < f) {
1002     index = f;
1003     double o = origin, b = bound;
1004     do {
1005     consumer.accept(rng.internalNextDouble(o, b));
1006     } while (++i < f);
1007     }
1008     }
1009     }
1010    
1011     }
1012