ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.5
Committed: Thu Jul 11 23:14:45 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.4: +8 -4 lines
Log Message:
IMprove nextDouble()

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.util.concurrent.atomic.AtomicLong;
29     import java.util.Spliterator;
30     import java.util.function.IntConsumer;
31     import java.util.function.LongConsumer;
32     import java.util.function.DoubleConsumer;
33     import java.util.stream.StreamSupport;
34     import java.util.stream.IntStream;
35     import java.util.stream.LongStream;
36     import java.util.stream.DoubleStream;
37    
38    
39     /**
40     * A generator of uniform pseudorandom values applicable for use in
41     * (among other contexts) isolated parallel computations that may
42     * generate subtasks. Class SplittableRandom supports methods for
43 jsr166 1.3 * producing pseudorandom numbers of type {@code int}, {@code long},
44 dl 1.1 * and {@code double} with similar usages as for class
45     * {@link java.util.Random} but differs in the following ways: <ul>
46     *
47     * <li>Series of generated values pass the DieHarder suite testing
48     * independence and uniformity properties of random number generators.
49     * (Most recently validated with <a
50     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51     * 3.31.1</a>.) These tests validate only the methods for certain
52     * types and ranges, but similar properties are expected to hold, at
53     * least approximately, for others as well. </li>
54     *
55     * <li> Method {@link #split} constructs and returns a new
56     * SplittableRandom instance that shares no mutable state with the
57     * current instance. However, with very high probability, the set of
58     * values collectively generated by the two objects has the same
59     * statistical properties as if the same quantity of values were
60     * generated by a single thread using a single {@code
61     * SplittableRandom} object. </li>
62     *
63     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
64     * They are designed to be split, not shared, across threads. For
65     * example, a {@link java.util.concurrent.ForkJoinTask
66     * fork/join-style} computation using random numbers might include a
67     * construction of the form {@code new
68     * Subtask(aSplittableRandom.split()).fork()}.
69     *
70     * <li>This class provides additional methods for generating random
71     * streams, that employ the above techniques when used in {@code
72     * stream.parallel()} mode.</li>
73     *
74     * </ul>
75     *
76     * @author Guy Steele
77 dl 1.2 * @author Doug Lea
78 dl 1.1 * @since 1.8
79     */
80     public class SplittableRandom {
81    
82     /*
83     * File organization: First the non-public methods that constitute
84     * the main algorithm, then the main public methods, followed by
85     * some custom spliterator classes needed for stream methods.
86     *
87     * Credits: Primary algorithm and code by Guy Steele. Stream
88     * support methods by Doug Lea. Documentation jointly produced
89     * with additional help from Brian Goetz.
90     */
91    
92     /*
93     * Implementation Overview.
94     *
95     * This algorithm was inspired by the "DotMix" algorithm by
96     * Leiserson, Schardl, and Sukha "Deterministic Parallel
97     * Random-Number Generation for Dynamic-Multithreading Platforms",
98     * PPoPP 2012, but improves and extends it in several ways.
99     *
100     * The primary update step is simply to add a constant ("gamma")
101     * to the current seed, modulo a prime ("George"). However, the
102     * nextLong and nextInt methods do not return this value, but
103     * instead the results of bit-mixing transformations that produce
104     * more uniformly distributed sequences.
105     *
106     * "George" is the otherwise nameless (because it cannot be
107     * represented) prime number 2^64+13. Using a prime number larger
108     * than can fit in a long ensures that all possible long values
109     * can occur, plus 13 others that just get skipped over when they
110     * are encountered; see method addGammaModGeorge. For this to
111     * work, initial gamma values must be at least 13.
112     *
113     * The value of gamma differs for each instance across a series of
114     * splits, and is generated using a slightly stripped-down variant
115     * of the same algorithm, but operating across calls to split(),
116 dl 1.2 * not calls to nextSeed(): Each instance carries the state of
117 dl 1.1 * this generator as nextSplit, and uses mix64(nextSplit) as its
118     * own gamma value. Computations of gammas themselves use a fixed
119     * constant as the second argument to the addGammaModGeorge
120     * function, GAMMA_GAMMA, a "genuinely random" number from a
121     * radioactive decay reading (obtained from
122     * http://www.fourmilab.ch/hotbits/) meeting the above range
123     * constraint. Using a fixed constant maintains the invariant that
124     * the value of gamma is the same for every instance that is at
125     * the same split-distance from their common root. (Note: there is
126     * nothing especially magic about obtaining this constant from a
127     * "truly random" physical source rather than just choosing one
128     * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129     * choice. In either case, good statistical behavior of the
130     * algorithm should be, and was, verified by using the DieHarder
131     * test suite.)
132     *
133     * The mix64 bit-mixing function called by nextLong and other
134     * methods computes the same value as the "64-bit finalizer"
135     * function in Austin Appleby's MurmurHash3 algorithm. See
136     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
137     * comments: "The constants for the finalizers were generated by a
138     * simple simulated-annealing algorithm, and both avalanche all
139     * bits of 'h' to within 0.25% bias." It also appears to work to
140     * use instead any of the variants proposed by David Stafford at
141     * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
142     * but these variants have not yet been tested as thoroughly
143     * in the context of the implementation of SplittableRandom.
144     *
145     * The mix32 function used for nextInt just consists of two of the
146     * five lines of mix64; avalanche testing shows that the 64-bit result
147     * has its top 32 bits avalanched well, though not the bottom 32 bits.
148     * DieHarder tests show that it is adequate for generating one
149     * random int from the 64-bit result of nextSeed.
150     *
151     * Support for the default (no-argument) constructor relies on an
152     * AtomicLong (defaultSeedGenerator) to help perform the
153     * equivalent of a split of a statically constructed
154     * SplittableRandom. Unlike other cases, this split must be
155     * performed in a thread-safe manner. We use
156     * AtomicLong.compareAndSet as the (typically) most efficient
157     * mechanism. To bootstrap, we start off using System.nanotime(),
158     * and update using another "genuinely random" constant
159     * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
160     * not 0, for its splitSeed argument (addGammaModGeorge(0,
161     * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
162     * this root generator, even though the root is not explicitly
163     * represented as a SplittableRandom.
164     */
165    
166     /**
167     * The "genuinely random" value for producing new gamma values.
168     * The value is arbitrary, subject to the requirement that it be
169     * greater or equal to 13.
170     */
171     private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172    
173     /**
174     * The "genuinely random" seed update value for default constructors.
175     * The value is arbitrary, subject to the requirement that it be
176     * greater or equal to 13.
177     */
178     private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
179    
180     /**
181 dl 1.5 * The least non-zero value returned by nextDouble(). This value
182     * is scaled by a random value of 53 bits to produce a result.
183     */
184     private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
185    
186     /**
187 dl 1.1 * The next seed for default constructors.
188     */
189     private static final AtomicLong defaultSeedGenerator =
190     new AtomicLong(System.nanoTime());
191    
192     /**
193     * The seed, updated only via method nextSeed.
194     */
195     private long seed;
196    
197     /**
198     * The constant value added to seed (mod George) on each update.
199     */
200     private final long gamma;
201    
202     /**
203     * The next seed to use for splits. Propagated using
204     * addGammaModGeorge across instances.
205     */
206     private final long nextSplit;
207    
208     /**
209     * Internal constructor used by all other constructors and by
210     * method split. Establishes the initial seed for this instance,
211     * and uses the given splitSeed to establish gamma, as well as the
212     * nextSplit to use by this instance.
213     */
214     private SplittableRandom(long seed, long splitSeed) {
215     this.seed = seed;
216     long s = splitSeed, g;
217     do { // ensure gamma >= 13, considered as an unsigned integer
218     s = addGammaModGeorge(s, GAMMA_GAMMA);
219     g = mix64(s);
220     } while (Long.compareUnsigned(g, 13L) < 0);
221     this.gamma = g;
222     this.nextSplit = s;
223     }
224    
225     /**
226     * Adds the given gamma value, g, to the given seed value s, mod
227     * George (2^64+13). We regard s and g as unsigned values
228     * (ranging from 0 to 2^64-1). We add g to s either once or twice
229     * (mod George) as necessary to produce an (unsigned) result less
230     * than 2^64. We require that g must be at least 13. This
231     * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
232     * George < 2^64; thus we need only a conditional, not a loop,
233     * to be sure of getting a representable value.
234     *
235     * @param s a seed value
236     * @param g a gamma value, 13 <= g (as unsigned)
237     */
238     private static long addGammaModGeorge(long s, long g) {
239     long p = s + g;
240     if (Long.compareUnsigned(p, g) >= 0)
241     return p;
242     long q = p - 13L;
243     return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
244     }
245    
246     /**
247     * Updates in-place and returns seed.
248     * See above for explanation.
249     */
250     private long nextSeed() {
251     return seed = addGammaModGeorge(seed, gamma);
252     }
253    
254     /**
255     * Returns a bit-mixed transformation of its argument.
256     * See above for explanation.
257     */
258     private static long mix64(long z) {
259     z ^= (z >>> 33);
260     z *= 0xff51afd7ed558ccdL;
261     z ^= (z >>> 33);
262     z *= 0xc4ceb9fe1a85ec53L;
263     z ^= (z >>> 33);
264     return z;
265     }
266    
267     /**
268     * Returns a bit-mixed int transformation of its argument.
269     * See above for explanation.
270     */
271     private static int mix32(long z) {
272     z ^= (z >>> 33);
273     z *= 0xc4ceb9fe1a85ec53L;
274     return (int)(z >>> 32);
275     }
276    
277     /**
278     * Atomically updates and returns next seed for default constructor
279     */
280     private static long nextDefaultSeed() {
281     long oldSeed, newSeed;
282     do {
283     oldSeed = defaultSeedGenerator.get();
284     newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
285     } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
286     return mix64(newSeed);
287     }
288    
289     /*
290     * Internal versions of nextX methods used by streams, as well as
291     * the public nextX(origin, bound) methods. These exist mainly to
292     * avoid the need for multiple versions of stream spliterators
293     * across the different exported forms of streams.
294     */
295    
296     /**
297     * The form of nextLong used by LongStream Spliterators. If
298     * origin is greater than bound, acts as unbounded form of
299     * nextLong, else as bounded form.
300     *
301     * @param origin the least value, unless greater than bound
302     * @param bound the upper bound (exclusive), must not equal origin
303     * @return a pseudorandom value
304     */
305     final long internalNextLong(long origin, long bound) {
306     /*
307     * Four Cases:
308     *
309     * 1. If the arguments indicate unbounded form, act as
310     * nextLong().
311     *
312     * 2. If the range is an exact power of two, apply the
313     * associated bit mask.
314     *
315     * 3. If the range is positive, loop to avoid potential bias
316     * when the implicit nextLong() bound (2<sup>64</sup>) is not
317     * evenly divisible by the range. The loop rejects candidates
318     * computed from otherwise over-represented values. The
319     * expected number of iterations under an ideal generator
320 dl 1.4 * varies from 1 to 2, depending on the bound. The loop itself
321     * takes an unlovable form. Because the first candidate is
322     * already available, we need a break-in-the-middle
323     * construction, which is concisely but cryptically performed
324     * within the while-condition of a body-less for loop.
325 dl 1.1 *
326     * 4. Otherwise, the range cannot be represented as a positive
327 dl 1.4 * long. The loop repeatedly generates unbounded longs until
328     * obtaining a candidate meeting constraints (with an expected
329     * number of iterations of less than two).
330 dl 1.1 */
331    
332     long r = mix64(nextSeed());
333     if (origin < bound) {
334     long n = bound - origin, m = n - 1;
335     if ((n & m) == 0L) // power of two
336     r = (r & m) + origin;
337     else if (n > 0) { // reject over-represented candidates
338     for (long u = r >>> 1; // ensure nonnegative
339     u + m - (r = u % n) < 0L; // reject
340     u = mix64(nextSeed()) >>> 1) // retry
341     ;
342     r += origin;
343     }
344     else { // range not representable as long
345     while (r < origin || r >= bound)
346     r = mix64(nextSeed());
347     }
348     }
349     return r;
350     }
351    
352     /**
353     * The form of nextInt used by IntStream Spliterators.
354     * Exactly the same as long version, except for types.
355     *
356     * @param origin the least value, unless greater than bound
357     * @param bound the upper bound (exclusive), must not equal origin
358     * @return a pseudorandom value
359     */
360     final int internalNextInt(int origin, int bound) {
361     int r = mix32(nextSeed());
362     if (origin < bound) {
363     int n = bound - origin, m = n - 1;
364     if ((n & m) == 0L)
365     r = (r & m) + origin;
366     else if (n > 0) {
367     for (int u = r >>> 1;
368     u + m - (r = u % n) < 0L;
369     u = mix32(nextSeed()) >>> 1)
370     ;
371     r += origin;
372     }
373     else {
374     while (r < origin || r >= bound)
375     r = mix32(nextSeed());
376     }
377     }
378     return r;
379     }
380    
381     /**
382     * The form of nextDouble used by DoubleStream Spliterators.
383     *
384     * @param origin the least value, unless greater than bound
385     * @param bound the upper bound (exclusive), must not equal origin
386     * @return a pseudorandom value
387     */
388     final double internalNextDouble(double origin, double bound) {
389 dl 1.5 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
390 dl 1.1 if (origin < bound) {
391     r = r * (bound - origin) + origin;
392     if (r == bound) // correct for rounding
393     r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
394     }
395     return r;
396     }
397    
398     /* ---------------- public methods ---------------- */
399    
400     /**
401     * Creates a new SplittableRandom instance using the given initial
402     * seed. Two SplittableRandom instances created with the same seed
403     * generate identical sequences of values.
404     *
405     * @param seed the initial seed
406     */
407     public SplittableRandom(long seed) {
408     this(seed, 0);
409     }
410    
411     /**
412     * Creates a new SplittableRandom instance that is likely to
413     * generate sequences of values that are statistically independent
414     * of those of any other instances in the current program; and
415     * may, and typically does, vary across program invocations.
416     */
417     public SplittableRandom() {
418     this(nextDefaultSeed(), GAMMA_GAMMA);
419     }
420    
421     /**
422     * Constructs and returns a new SplittableRandom instance that
423     * shares no mutable state with this instance. However, with very
424     * high probability, the set of values collectively generated by
425     * the two objects has the same statistical properties as if the
426     * same quantity of values were generated by a single thread using
427     * a single SplittableRandom object. Either or both of the two
428     * objects may be further split using the {@code split()} method,
429     * and the same expected statistical properties apply to the
430     * entire set of generators constructed by such recursive
431     * splitting.
432     *
433     * @return the new SplittableRandom instance
434     */
435     public SplittableRandom split() {
436     return new SplittableRandom(nextSeed(), nextSplit);
437     }
438    
439     /**
440     * Returns a pseudorandom {@code int} value.
441     *
442     * @return a pseudorandom value
443     */
444     public int nextInt() {
445     return mix32(nextSeed());
446     }
447    
448     /**
449     * Returns a pseudorandom {@code int} value between 0 (inclusive)
450     * and the specified bound (exclusive).
451     *
452     * @param bound the bound on the random number to be returned. Must be
453     * positive.
454     * @return a pseudorandom {@code int} value between {@code 0}
455     * (inclusive) and the bound (exclusive).
456     * @exception IllegalArgumentException if the bound is not positive
457     */
458     public int nextInt(int bound) {
459     if (bound <= 0)
460     throw new IllegalArgumentException("bound must be positive");
461     // Specialize internalNextInt for origin 0
462     int r = mix32(nextSeed());
463     int m = bound - 1;
464     if ((bound & m) == 0L) // power of two
465     r &= m;
466     else { // reject over-represented candidates
467     for (int u = r >>> 1;
468     u + m - (r = u % bound) < 0L;
469     u = mix32(nextSeed()) >>> 1)
470     ;
471     }
472     return r;
473     }
474    
475     /**
476     * Returns a pseudorandom {@code int} value between the specified
477     * origin (inclusive) and the specified bound (exclusive).
478     *
479     * @param origin the least value returned
480     * @param bound the upper bound (exclusive)
481     * @return a pseudorandom {@code int} value between the origin
482     * (inclusive) and the bound (exclusive).
483     * @exception IllegalArgumentException if {@code origin} is greater than
484     * or equal to {@code bound}
485     */
486     public int nextInt(int origin, int bound) {
487     if (origin >= bound)
488     throw new IllegalArgumentException("bound must be greater than origin");
489     return internalNextInt(origin, bound);
490     }
491    
492     /**
493     * Returns a pseudorandom {@code long} value.
494     *
495     * @return a pseudorandom value
496     */
497     public long nextLong() {
498     return mix64(nextSeed());
499     }
500    
501     /**
502     * Returns a pseudorandom {@code long} value between 0 (inclusive)
503     * and the specified bound (exclusive).
504     *
505     * @param bound the bound on the random number to be returned. Must be
506     * positive.
507     * @return a pseudorandom {@code long} value between {@code 0}
508     * (inclusive) and the bound (exclusive).
509     * @exception IllegalArgumentException if the bound is not positive
510     */
511     public long nextLong(long bound) {
512     if (bound <= 0)
513     throw new IllegalArgumentException("bound must be positive");
514     // Specialize internalNextLong for origin 0
515     long r = mix64(nextSeed());
516     long m = bound - 1;
517     if ((bound & m) == 0L) // power of two
518     r &= m;
519     else { // reject over-represented candidates
520     for (long u = r >>> 1;
521     u + m - (r = u % bound) < 0L;
522     u = mix64(nextSeed()) >>> 1)
523     ;
524     }
525     return r;
526     }
527    
528     /**
529     * Returns a pseudorandom {@code long} value between the specified
530     * origin (inclusive) and the specified bound (exclusive).
531     *
532     * @param origin the least value returned
533     * @param bound the upper bound (exclusive)
534     * @return a pseudorandom {@code long} value between the origin
535     * (inclusive) and the bound (exclusive).
536     * @exception IllegalArgumentException if {@code origin} is greater than
537     * or equal to {@code bound}
538     */
539     public long nextLong(long origin, long bound) {
540     if (origin >= bound)
541     throw new IllegalArgumentException("bound must be greater than origin");
542     return internalNextLong(origin, bound);
543     }
544    
545     /**
546     * Returns a pseudorandom {@code double} value between {@code 0.0}
547     * (inclusive) and {@code 1.0} (exclusive).
548     *
549     * @return a pseudorandom value between {@code 0.0}
550     * (inclusive) and {@code 1.0} (exclusive)
551     */
552     public double nextDouble() {
553 dl 1.5 return (nextLong() >>> 11) * DOUBLE_UNIT;
554 dl 1.1 }
555    
556     /**
557     * Returns a pseudorandom {@code double} value between 0.0
558     * (inclusive) and the specified bound (exclusive).
559     *
560     * @param bound the bound on the random number to be returned. Must be
561     * positive.
562     * @return a pseudorandom {@code double} value between {@code 0.0}
563     * (inclusive) and the bound (exclusive).
564     * @throws IllegalArgumentException if {@code bound} is not positive
565     */
566     public double nextDouble(double bound) {
567     if (bound <= 0.0)
568     throw new IllegalArgumentException("bound must be positive");
569     double result = nextDouble() * bound;
570     return (result < bound) ? result : // correct for rounding
571     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
572     }
573    
574     /**
575     * Returns a pseudorandom {@code double} value between the given
576     * origin (inclusive) and bound (exclusive).
577     *
578     * @param origin the least value returned
579     * @param bound the upper bound
580     * @return a pseudorandom {@code double} value between the origin
581     * (inclusive) and the bound (exclusive).
582     * @throws IllegalArgumentException if {@code origin} is greater than
583     * or equal to {@code bound}
584     */
585     public double nextDouble(double origin, double bound) {
586     if (origin >= bound)
587     throw new IllegalArgumentException("bound must be greater than origin");
588     return internalNextDouble(origin, bound);
589     }
590    
591     // stream methods, coded in a way intended to better isolate for
592     // maintenance purposes the small differences across forms.
593    
594     /**
595     * Returns a stream with the given {@code streamSize} number of
596     * pseudorandom {@code int} values.
597     *
598     * @param streamSize the number of values to generate
599     * @return a stream of pseudorandom {@code int} values
600     * @throws IllegalArgumentException if {@code streamSize} is
601     * less than zero
602     */
603     public IntStream ints(long streamSize) {
604     if (streamSize < 0L)
605     throw new IllegalArgumentException("negative Stream size");
606     return StreamSupport.intStream
607     (new RandomIntsSpliterator
608     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
609     false);
610     }
611    
612     /**
613     * Returns an effectively unlimited stream of pseudorandom {@code int}
614     * values
615     *
616     * @implNote This method is implemented to be equivalent to {@code
617     * ints(Long.MAX_VALUE)}.
618     *
619     * @return a stream of pseudorandom {@code int} values
620     */
621     public IntStream ints() {
622     return StreamSupport.intStream
623     (new RandomIntsSpliterator
624     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
625     false);
626     }
627    
628     /**
629     * Returns a stream with the given {@code streamSize} number of
630     * pseudorandom {@code int} values, each conforming to the given
631     * origin and bound.
632     *
633     * @param streamSize the number of values to generate
634     * @param randomNumberOrigin the origin of each random value
635     * @param randomNumberBound the bound of each random value
636     * @return a stream of pseudorandom {@code int} values,
637     * each with the given origin and bound.
638     * @throws IllegalArgumentException if {@code streamSize} is
639     * less than zero.
640     * @throws IllegalArgumentException if {@code randomNumberOrigin}
641     * is greater than or equal to {@code randomNumberBound}
642     */
643     public IntStream ints(long streamSize, int randomNumberOrigin,
644     int randomNumberBound) {
645     if (streamSize < 0L)
646     throw new IllegalArgumentException("negative Stream size");
647     if (randomNumberOrigin >= randomNumberBound)
648     throw new IllegalArgumentException("bound must be greater than origin");
649     return StreamSupport.intStream
650     (new RandomIntsSpliterator
651     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
652     false);
653     }
654    
655     /**
656     * Returns an effectively unlimited stream of pseudorandom {@code
657     * int} values, each conforming to the given origin and bound.
658     *
659     * @implNote This method is implemented to be equivalent to {@code
660     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
661     *
662     * @param randomNumberOrigin the origin of each random value
663     * @param randomNumberBound the bound of each random value
664     * @return a stream of pseudorandom {@code int} values,
665     * each with the given origin and bound.
666     * @throws IllegalArgumentException if {@code randomNumberOrigin}
667     * is greater than or equal to {@code randomNumberBound}
668     */
669     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
670     if (randomNumberOrigin >= randomNumberBound)
671     throw new IllegalArgumentException("bound must be greater than origin");
672     return StreamSupport.intStream
673     (new RandomIntsSpliterator
674     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
675     false);
676     }
677    
678     /**
679     * Returns a stream with the given {@code streamSize} number of
680     * pseudorandom {@code long} values.
681     *
682     * @param streamSize the number of values to generate
683     * @return a stream of {@code long} values
684     * @throws IllegalArgumentException if {@code streamSize} is
685     * less than zero
686     */
687     public LongStream longs(long streamSize) {
688     if (streamSize < 0L)
689     throw new IllegalArgumentException("negative Stream size");
690     return StreamSupport.longStream
691     (new RandomLongsSpliterator
692     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
693     false);
694     }
695    
696     /**
697     * Returns an effectively unlimited stream of pseudorandom {@code long}
698     * values.
699     *
700     * @implNote This method is implemented to be equivalent to {@code
701     * longs(Long.MAX_VALUE)}.
702     *
703     * @return a stream of pseudorandom {@code long} values
704     */
705     public LongStream longs() {
706     return StreamSupport.longStream
707     (new RandomLongsSpliterator
708     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
709     false);
710     }
711    
712     /**
713     * Returns a stream with the given {@code streamSize} number of
714     * pseudorandom {@code long} values, each conforming to the
715     * given origin and bound.
716     *
717     * @param streamSize the number of values to generate
718     * @param randomNumberOrigin the origin of each random value
719     * @param randomNumberBound the bound of each random value
720     * @return a stream of pseudorandom {@code long} values,
721     * each with the given origin and bound.
722     * @throws IllegalArgumentException if {@code streamSize} is
723     * less than zero.
724     * @throws IllegalArgumentException if {@code randomNumberOrigin}
725     * is greater than or equal to {@code randomNumberBound}
726     */
727     public LongStream longs(long streamSize, long randomNumberOrigin,
728     long randomNumberBound) {
729     if (streamSize < 0L)
730     throw new IllegalArgumentException("negative Stream size");
731     if (randomNumberOrigin >= randomNumberBound)
732     throw new IllegalArgumentException("bound must be greater than origin");
733     return StreamSupport.longStream
734     (new RandomLongsSpliterator
735     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
736     false);
737     }
738    
739     /**
740     * Returns an effectively unlimited stream of pseudorandom {@code
741     * long} values, each conforming to the given origin and bound.
742     *
743     * @implNote This method is implemented to be equivalent to {@code
744     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
745     *
746     * @param randomNumberOrigin the origin of each random value
747     * @param randomNumberBound the bound of each random value
748     * @return a stream of pseudorandom {@code long} values,
749     * each with the given origin and bound.
750     * @throws IllegalArgumentException if {@code randomNumberOrigin}
751     * is greater than or equal to {@code randomNumberBound}
752     */
753     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
754     if (randomNumberOrigin >= randomNumberBound)
755     throw new IllegalArgumentException("bound must be greater than origin");
756     return StreamSupport.longStream
757     (new RandomLongsSpliterator
758     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
759     false);
760     }
761    
762     /**
763     * Returns a stream with the given {@code streamSize} number of
764 dl 1.2 * pseudorandom {@code double} values, each between {@code 0.0}
765     * (inclusive) and {@code 1.0} (exclusive).
766 dl 1.1 *
767     * @param streamSize the number of values to generate
768     * @return a stream of {@code double} values
769     * @throws IllegalArgumentException if {@code streamSize} is
770     * less than zero
771     */
772     public DoubleStream doubles(long streamSize) {
773     if (streamSize < 0L)
774     throw new IllegalArgumentException("negative Stream size");
775     return StreamSupport.doubleStream
776     (new RandomDoublesSpliterator
777     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
778     false);
779     }
780    
781     /**
782     * Returns an effectively unlimited stream of pseudorandom {@code
783 dl 1.2 * double} values, each between {@code 0.0} (inclusive) and {@code
784     * 1.0} (exclusive).
785 dl 1.1 *
786     * @implNote This method is implemented to be equivalent to {@code
787     * doubles(Long.MAX_VALUE)}.
788     *
789     * @return a stream of pseudorandom {@code double} values
790     */
791     public DoubleStream doubles() {
792     return StreamSupport.doubleStream
793     (new RandomDoublesSpliterator
794     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
795     false);
796     }
797    
798     /**
799     * Returns a stream with the given {@code streamSize} number of
800     * pseudorandom {@code double} values, each conforming to the
801     * given origin and bound.
802     *
803     * @param streamSize the number of values to generate
804     * @param randomNumberOrigin the origin of each random value
805     * @param randomNumberBound the bound of each random value
806     * @return a stream of pseudorandom {@code double} values,
807     * each with the given origin and bound.
808     * @throws IllegalArgumentException if {@code streamSize} is
809     * less than zero.
810     * @throws IllegalArgumentException if {@code randomNumberOrigin}
811     * is greater than or equal to {@code randomNumberBound}
812     */
813     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
814     double randomNumberBound) {
815     if (streamSize < 0L)
816     throw new IllegalArgumentException("negative Stream size");
817     if (randomNumberOrigin >= randomNumberBound)
818     throw new IllegalArgumentException("bound must be greater than origin");
819     return StreamSupport.doubleStream
820     (new RandomDoublesSpliterator
821     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
822     false);
823     }
824    
825     /**
826     * Returns an effectively unlimited stream of pseudorandom {@code
827     * double} values, each conforming to the given origin and bound.
828     *
829     * @implNote This method is implemented to be equivalent to {@code
830     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
831     *
832     * @param randomNumberOrigin the origin of each random value
833     * @param randomNumberBound the bound of each random value
834     * @return a stream of pseudorandom {@code double} values,
835     * each with the given origin and bound.
836     * @throws IllegalArgumentException if {@code randomNumberOrigin}
837     * is greater than or equal to {@code randomNumberBound}
838     */
839     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
840     if (randomNumberOrigin >= randomNumberBound)
841     throw new IllegalArgumentException("bound must be greater than origin");
842     return StreamSupport.doubleStream
843     (new RandomDoublesSpliterator
844     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
845     false);
846     }
847    
848     /**
849     * Spliterator for int streams. We multiplex the four int
850     * versions into one class by treating and bound < origin as
851     * unbounded, and also by treating "infinite" as equivalent to
852     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
853     * approach. The long and double versions of this class are
854     * identical except for types.
855     */
856     static class RandomIntsSpliterator implements Spliterator.OfInt {
857     final SplittableRandom rng;
858     long index;
859     final long fence;
860     final int origin;
861     final int bound;
862     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
863     int origin, int bound) {
864     this.rng = rng; this.index = index; this.fence = fence;
865     this.origin = origin; this.bound = bound;
866     }
867    
868     public RandomIntsSpliterator trySplit() {
869     long i = index, m = (i + fence) >>> 1;
870     return (m <= i) ? null :
871     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
872     }
873    
874     public long estimateSize() {
875     return fence - index;
876     }
877    
878     public int characteristics() {
879     return (Spliterator.SIZED | Spliterator.SUBSIZED |
880 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
881 dl 1.1 }
882    
883     public boolean tryAdvance(IntConsumer consumer) {
884     if (consumer == null) throw new NullPointerException();
885     long i = index, f = fence;
886     if (i < f) {
887     consumer.accept(rng.internalNextInt(origin, bound));
888     index = i + 1;
889     return true;
890     }
891     return false;
892     }
893    
894     public void forEachRemaining(IntConsumer consumer) {
895     if (consumer == null) throw new NullPointerException();
896     long i = index, f = fence;
897     if (i < f) {
898     index = f;
899     int o = origin, b = bound;
900     do {
901     consumer.accept(rng.internalNextInt(o, b));
902     } while (++i < f);
903     }
904     }
905     }
906    
907     /**
908     * Spliterator for long streams.
909     */
910     static class RandomLongsSpliterator implements Spliterator.OfLong {
911     final SplittableRandom rng;
912     long index;
913     final long fence;
914     final long origin;
915     final long bound;
916     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
917     long origin, long bound) {
918     this.rng = rng; this.index = index; this.fence = fence;
919     this.origin = origin; this.bound = bound;
920     }
921    
922     public RandomLongsSpliterator trySplit() {
923     long i = index, m = (i + fence) >>> 1;
924     return (m <= i) ? null :
925     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
926     }
927    
928     public long estimateSize() {
929     return fence - index;
930     }
931    
932     public int characteristics() {
933     return (Spliterator.SIZED | Spliterator.SUBSIZED |
934 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
935 dl 1.1 }
936    
937     public boolean tryAdvance(LongConsumer consumer) {
938     if (consumer == null) throw new NullPointerException();
939     long i = index, f = fence;
940     if (i < f) {
941     consumer.accept(rng.internalNextLong(origin, bound));
942     index = i + 1;
943     return true;
944     }
945     return false;
946     }
947    
948     public void forEachRemaining(LongConsumer consumer) {
949     if (consumer == null) throw new NullPointerException();
950     long i = index, f = fence;
951     if (i < f) {
952     index = f;
953     long o = origin, b = bound;
954     do {
955     consumer.accept(rng.internalNextLong(o, b));
956     } while (++i < f);
957     }
958     }
959    
960     }
961    
962     /**
963     * Spliterator for double streams.
964     */
965     static class RandomDoublesSpliterator implements Spliterator.OfDouble {
966     final SplittableRandom rng;
967     long index;
968     final long fence;
969     final double origin;
970     final double bound;
971     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
972     double origin, double bound) {
973     this.rng = rng; this.index = index; this.fence = fence;
974     this.origin = origin; this.bound = bound;
975     }
976    
977     public RandomDoublesSpliterator trySplit() {
978     long i = index, m = (i + fence) >>> 1;
979     return (m <= i) ? null :
980     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
981     }
982    
983     public long estimateSize() {
984     return fence - index;
985     }
986    
987     public int characteristics() {
988     return (Spliterator.SIZED | Spliterator.SUBSIZED |
989 dl 1.4 Spliterator.NONNULL | Spliterator.IMMUTABLE);
990 dl 1.1 }
991    
992     public boolean tryAdvance(DoubleConsumer consumer) {
993     if (consumer == null) throw new NullPointerException();
994     long i = index, f = fence;
995     if (i < f) {
996     consumer.accept(rng.internalNextDouble(origin, bound));
997     index = i + 1;
998     return true;
999     }
1000     return false;
1001     }
1002    
1003     public void forEachRemaining(DoubleConsumer consumer) {
1004     if (consumer == null) throw new NullPointerException();
1005     long i = index, f = fence;
1006     if (i < f) {
1007     index = f;
1008     double o = origin, b = bound;
1009     do {
1010     consumer.accept(rng.internalNextDouble(o, b));
1011     } while (++i < f);
1012     }
1013     }
1014     }
1015    
1016     }
1017