ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
(Generate patch)

Comparing jsr166/src/main/java/util/SplittableRandom.java (file contents):
Revision 1.20 by jsr166, Sat Aug 24 06:20:15 2013 UTC vs.
Revision 1.24 by dl, Mon Oct 7 10:54:27 2013 UTC

# Line 25 | Line 25
25  
26   package java.util;
27  
28 < import java.security.SecureRandom;
29 < import java.net.InetAddress;
28 > import java.net.NetworkInterface;
29   import java.util.concurrent.atomic.AtomicLong;
30   import java.util.function.IntConsumer;
31   import java.util.function.LongConsumer;
# Line 88 | Line 87 | import java.util.stream.DoubleStream;
87   * @author  Doug Lea
88   * @since   1.8
89   */
90 < public class SplittableRandom {
90 > public final class SplittableRandom {
91  
92      /*
93       * Implementation Overview.
# Line 108 | Line 107 | public class SplittableRandom {
107       * Methods nextLong, nextInt, and derivatives do not return the
108       * sequence (seed) values, but instead a hash-like bit-mix of
109       * their bits, producing more independently distributed sequences.
110 <     * For nextLong, the mix64 bit-mixing function computes the same
111 <     * value as the "64-bit finalizer" function in Austin Appleby's
112 <     * MurmurHash3 algorithm.  See
113 <     * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
114 <     * comments: "The constants for the finalizers were generated by a
115 <     * simple simulated-annealing algorithm, and both avalanche all
116 <     * bits of 'h' to within 0.25% bias." The mix32 function is
118 <     * equivalent to (int)(mix64(seed) >>> 32), but faster because it
119 <     * omits a step that doesn't contribute to result.
110 >     * For nextLong, the mix64 function is based on David Stafford's
111 >     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
112 >     * "Mix13" variant of the "64-bit finalizer" function in Austin
113 >     * Appleby's MurmurHash3 algorithm (see
114 >     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
115 >     * function is based on Stafford's Mix04 mix function, but returns
116 >     * the upper 32 bits cast as int.
117       *
118       * The split operation uses the current generator to form the seed
119       * and gamma for another SplittableRandom.  To conservatively
120       * avoid potential correlations between seed and value generation,
121 <     * gamma selection (method nextGamma) uses the "Mix13" constants
122 <     * for MurmurHash3 described by David Stafford
123 <     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
124 <     * To avoid potential weaknesses in bit-mixing transformations, we
125 <     * restrict gammas to odd values with at least 12 and no more than
126 <     * 52 bits set.  Rather than rejecting candidates with too few or
127 <     * too many bits set, method nextGamma flips some bits (which has
128 <     * the effect of mapping at most 4 to any given gamma value).
132 <     * This reduces the effective set of 64bit odd gamma values by
133 <     * about 2<sup>14</sup>, a very tiny percentage, and serves as an
121 >     * gamma selection (method mixGamma) uses different
122 >     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
123 >     * in bit-mixing transformations, we restrict gammas to odd values
124 >     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
125 >     * rejecting candidates with too few or too many bits set, method
126 >     * mixGamma flips some bits (which has the effect of mapping at
127 >     * most 4 to any given gamma value).  This reduces the effective
128 >     * set of 64bit odd gamma values by about 2%, and serves as an
129       * automated screening for sequence constant selection that is
130       * left as an empirical decision in some other hashing and crypto
131       * algorithms.
# Line 141 | Line 136 | public class SplittableRandom {
136       * avalanching.
137       *
138       * The default (no-argument) constructor, in essence, invokes
139 <     * split() for a common "seeder" SplittableRandom.  Unlike other
140 <     * cases, this split must be performed in a thread-safe manner, so
141 <     * we use an AtomicLong to represent the seed rather than use an
142 <     * explicit SplittableRandom. To bootstrap the seeder, we start
143 <     * off using a seed based on current time and host unless the
144 <     * java.util.secureRandomSeed property is set. This serves as a
145 <     * slimmed-down (and insecure) variant of SecureRandom that also
146 <     * avoids stalls that may occur when using /dev/random.
139 >     * split() for a common "defaultGen" SplittableRandom.  Unlike
140 >     * other cases, this split must be performed in a thread-safe
141 >     * manner, so we use an AtomicLong to represent the seed rather
142 >     * than use an explicit SplittableRandom. To bootstrap the
143 >     * defaultGen, we start off using a seed based on current time and
144 >     * network interface address unless the java.util.secureRandomSeed
145 >     * property is set. This serves as a slimmed-down (and insecure)
146 >     * variant of SecureRandom that also avoids stalls that may occur
147 >     * when using /dev/random.
148       *
149       * It is a relatively simple matter to apply the basic design here
150       * to use 128 bit seeds. However, emulating 128bit arithmetic and
# Line 161 | Line 157 | public class SplittableRandom {
157       */
158  
159      /**
160 <     * The initial gamma value for (unsplit) SplittableRandoms. Must
161 <     * be odd with at least 12 and no more than 52 bits set. Currently
166 <     * set to the golden ratio scaled to 64bits.
160 >     * The golden ratio scaled to 64bits, used as the initial gamma
161 >     * value for (unsplit) SplittableRandoms.
162       */
163 <    private static final long INITIAL_GAMMA = 0x9e3779b97f4a7c15L;
163 >    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
164  
165      /**
166       * The least non-zero value returned by nextDouble(). This value
167       * is scaled by a random value of 53 bits to produce a result.
168       */
169 <    private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
169 >    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
170  
171      /**
172       * The seed. Updated only via method nextSeed.
# Line 192 | Line 187 | public class SplittableRandom {
187      }
188  
189      /**
190 <     * Computes MurmurHash3 64bit mix function.
190 >     * Computes Stafford variant 13 of 64bit mix function.
191       */
192      private static long mix64(long z) {
193 <        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
194 <        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
195 <        return z ^ (z >>> 33);
193 >        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
194 >        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
195 >        return z ^ (z >>> 31);
196      }
197  
198      /**
199 <     * Returns the 32 high bits of mix64(z) as int.
199 >     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
200       */
201      private static int mix32(long z) {
202 <        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
203 <        return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
202 >        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
203 >        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
204      }
205  
206      /**
207       * Returns the gamma value to use for a new split instance.
208       */
209 <    private static long nextGamma(long z) {
210 <        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L; // Stafford "Mix13"
211 <        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
212 <        z = (z ^ (z >>> 31)) | 1L; // force to be odd
213 <        int n = Long.bitCount(z);  // ensure enough 0 and 1 bits
214 <        return (n < 12 || n > 52) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
209 >    private static long mixGamma(long z) {
210 >        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
211 >        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
212 >        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
213 >        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
214 >        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
215      }
216  
217      /**
# Line 229 | Line 224 | public class SplittableRandom {
224      /**
225       * The seed generator for default constructors.
226       */
227 <    private static final AtomicLong seeder = new AtomicLong(initialSeed());
227 >    private static final AtomicLong defaultGen = new AtomicLong(initialSeed());
228  
229      private static long initialSeed() {
230 <        try {  // ignore exceptions in accessing/parsing properties
231 <            String pp = System.getProperty
232 <                ("java.util.secureRandomSeed");
233 <            if (pp != null && pp.equalsIgnoreCase("true")) {
234 <                byte[] seedBytes = java.security.SecureRandom.getSeed(8);
235 <                long s = (long)(seedBytes[0]) & 0xffL;
236 <                for (int i = 1; i < 8; ++i)
237 <                    s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
238 <                return s;
244 <            }
245 <        } catch (Exception ignore) {
230 >        String pp = java.security.AccessController.doPrivileged(
231 >                new sun.security.action.GetPropertyAction(
232 >                        "java.util.secureRandomSeed"));
233 >        if (pp != null && pp.equalsIgnoreCase("true")) {
234 >            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
235 >            long s = (long)(seedBytes[0]) & 0xffL;
236 >            for (int i = 1; i < 8; ++i)
237 >                s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
238 >            return s;
239          }
240 <        int hh = 0; // hashed host address
240 >        long h = 0L;
241          try {
242 <            hh = InetAddress.getLocalHost().hashCode();
242 >            Enumeration<NetworkInterface> ifcs =
243 >                    NetworkInterface.getNetworkInterfaces();
244 >            boolean retry = false; // retry once if getHardwareAddress is null
245 >            while (ifcs.hasMoreElements()) {
246 >                NetworkInterface ifc = ifcs.nextElement();
247 >                if (!ifc.isVirtual()) { // skip fake addresses
248 >                    byte[] bs = ifc.getHardwareAddress();
249 >                    if (bs != null) {
250 >                        int n = bs.length;
251 >                        int m = Math.min(n >>> 1, 4);
252 >                        for (int i = 0; i < m; ++i)
253 >                            h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
254 >                        if (m < 4)
255 >                            h = (h << 8) ^ bs[n-1-m];
256 >                        h = mix64(h);
257 >                        break;
258 >                    }
259 >                    else if (!retry)
260 >                        retry = true;
261 >                    else
262 >                        break;
263 >                }
264 >            }
265          } catch (Exception ignore) {
266          }
267 <        return (mix64((((long)hh) << 32) ^ System.currentTimeMillis()) ^
267 >        return (h ^ mix64(System.currentTimeMillis()) ^
268                  mix64(System.nanoTime()));
269      }
270  
# Line 377 | Line 392 | public class SplittableRandom {
392       * @param seed the initial seed
393       */
394      public SplittableRandom(long seed) {
395 <        this(seed, INITIAL_GAMMA);
395 >        this(seed, GOLDEN_GAMMA);
396      }
397  
398      /**
# Line 386 | Line 401 | public class SplittableRandom {
401       * of those of any other instances in the current program; and
402       * may, and typically does, vary across program invocations.
403       */
404 <    public SplittableRandom() { // emulate seeder.split()
405 <        this.gamma = nextGamma(this.seed = seeder.addAndGet(INITIAL_GAMMA));
404 >    public SplittableRandom() { // emulate defaultGen.split()
405 >        long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
406 >        this.seed = mix64(s);
407 >        this.gamma = mixGamma(s + GOLDEN_GAMMA);
408      }
409  
410      /**
# Line 405 | Line 422 | public class SplittableRandom {
422       * @return the new SplittableRandom instance
423       */
424      public SplittableRandom split() {
425 <        long s = nextSeed();
409 <        return new SplittableRandom(s, nextGamma(s));
425 >        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
426      }
427  
428      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines