ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.14
Committed: Mon Aug 5 13:58:02 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.13: +4 -6 lines
Log Message:
Update mix57

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.security.SecureRandom;
29 import java.util.concurrent.atomic.AtomicLong;
30 import java.util.Spliterator;
31 import java.util.function.IntConsumer;
32 import java.util.function.LongConsumer;
33 import java.util.function.DoubleConsumer;
34 import java.util.stream.StreamSupport;
35 import java.util.stream.IntStream;
36 import java.util.stream.LongStream;
37 import java.util.stream.DoubleStream;
38
39 /**
40 * A generator of uniform pseudorandom values applicable for use in
41 * (among other contexts) isolated parallel computations that may
42 * generate subtasks. Class SplittableRandom supports methods for
43 * producing pseudorandom numbers of type {@code int}, {@code long},
44 * and {@code double} with similar usages as for class
45 * {@link java.util.Random} but differs in the following ways:
46 *
47 * <ul>
48 *
49 * <li>Series of generated values pass the DieHarder suite testing
50 * independence and uniformity properties of random number generators.
51 * (Most recently validated with <a
52 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
53 * 3.31.1</a>.) These tests validate only the methods for certain
54 * types and ranges, but similar properties are expected to hold, at
55 * least approximately, for others as well. The <em>period</em>
56 * (length of any series of generated values before it repeats) is at
57 * least 2<sup>64</sup>. </li>
58 *
59 * <li> Method {@link #split} constructs and returns a new
60 * SplittableRandom instance that shares no mutable state with the
61 * current instance. However, with very high probability, the
62 * values collectively generated by the two objects have the same
63 * statistical properties as if the same quantity of values were
64 * generated by a single thread using a single {@code
65 * SplittableRandom} object. </li>
66 *
67 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
68 * They are designed to be split, not shared, across threads. For
69 * example, a {@link java.util.concurrent.ForkJoinTask
70 * fork/join-style} computation using random numbers might include a
71 * construction of the form {@code new
72 * Subtask(aSplittableRandom.split()).fork()}.
73 *
74 * <li>This class provides additional methods for generating random
75 * streams, that employ the above techniques when used in {@code
76 * stream.parallel()} mode.</li>
77 *
78 * </ul>
79 *
80 * @author Guy Steele
81 * @author Doug Lea
82 * @since 1.8
83 */
84 public class SplittableRandom {
85
86 /*
87 * File organization: First the non-public methods that constitute
88 * the main algorithm, then the main public methods, followed by
89 * some custom spliterator classes needed for stream methods.
90 *
91 * Credits: Primary algorithm and code by Guy Steele. Stream
92 * support methods by Doug Lea. Documentation jointly produced
93 * with additional help from Brian Goetz.
94 */
95
96 /*
97 * Implementation Overview.
98 *
99 * This algorithm was inspired by the "DotMix" algorithm by
100 * Leiserson, Schardl, and Sukha "Deterministic Parallel
101 * Random-Number Generation for Dynamic-Multithreading Platforms",
102 * PPoPP 2012, but improves and extends it in several ways.
103 *
104 * The primary update step (see method nextSeed()) is simply to
105 * add a constant ("gamma") to the current seed, modulo a prime
106 * ("George"). However, the nextLong and nextInt methods do not
107 * return this value, but instead the results of bit-mixing
108 * transformations that produce more uniformly distributed
109 * sequences.
110 *
111 * "George" is the otherwise nameless (because it cannot be
112 * represented) prime number 2^64+13. Using a prime number larger
113 * than can fit in a long ensures that all possible long values
114 * can occur, plus 13 others that just get skipped over when they
115 * are encountered; see method addGammaModGeorge. For this to
116 * work, initial gamma values must be at least 13.
117 *
118 * The mix64 bit-mixing function called by nextLong and other
119 * methods computes the same value as the "64-bit finalizer"
120 * function in Austin Appleby's MurmurHash3 algorithm. See
121 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
122 * comments: "The constants for the finalizers were generated by a
123 * simple simulated-annealing algorithm, and both avalanche all
124 * bits of 'h' to within 0.25% bias."
125 *
126 * The value of gamma differs for each instance across a series of
127 * splits, and is generated using an independent variant of the
128 * same algorithm, but operating across calls to split(), not
129 * calls to nextSeed(): Each instance carries the state of this
130 * generator as nextSplit. Gammas are treated as 57bit values,
131 * advancing by adding GAMMA_GAMMA mod GAMMA_PRIME, and bit-mixed
132 * with a 57-bit version of mix, using the "Mix13" multiplicative
133 * constants for MurmurHash3 described by David Stafford
134 * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html).
135 * The value of GAMMA_GAMMA is arbitrary (except must be at least
136 * 13 and less than GAMMA_PRIME), but because it serves as the
137 * base of split sequences, should be subject to validation of
138 * consequent random number quality metrics.
139 *
140 * The mix32 function used for nextInt just consists of two of the
141 * five lines of mix64; avalanche testing shows that the 64-bit
142 * result has its top 32 bits avalanched well, though not the
143 * bottom 32 bits. DieHarder tests show that it is adequate for
144 * generating one random int from the 64-bit result of nextSeed.
145 *
146 * Support for the default (no-argument) constructor relies on an
147 * AtomicLong (defaultSeedGenerator) to help perform the
148 * equivalent of a split of a statically constructed
149 * SplittableRandom. Unlike other cases, this split must be
150 * performed in a thread-safe manner. We use
151 * AtomicLong.compareAndSet as the (typically) most efficient
152 * mechanism. To bootstrap, we start off using a SecureRandom
153 * initial default seed, and update using a fixed
154 * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
155 * not 0, for its splitSeed argument (addGammaModGeorge(0,
156 * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
157 * this root generator, even though the root is not explicitly
158 * represented as a SplittableRandom.
159 */
160
161 /**
162 * The prime modulus for gamma values.
163 */
164 private static final long GAMMA_PRIME = (1L << 57) - 13L;
165
166 /**
167 * The value for producing new gamma values. Must be greater or
168 * equal to 13 and less than GAMMA_PRIME. Otherwise, the value is
169 * arbitrary subject to validation of the resulting statistical
170 * quality of splits.
171 */
172 private static final long GAMMA_GAMMA = 0x00aae38294f712aabL;
173
174 /**
175 * The seed update value for default constructors. Must be
176 * greater or equal to 13. Otherwise, the value is arbitrary
177 * subject to quality checks.
178 */
179 private static final long DEFAULT_SEED_GAMMA = 0x9e3779b97f4a7c15L;
180
181 /**
182 * The value 13 with 64bit sign bit set. Used in the signed
183 * comparison in addGammaModGeorge.
184 */
185 private static final long BOTTOM13 = 0x800000000000000DL;
186
187 /**
188 * The least non-zero value returned by nextDouble(). This value
189 * is scaled by a random value of 53 bits to produce a result.
190 */
191 private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
192
193 /**
194 * The next seed for default constructors.
195 */
196 private static final AtomicLong defaultSeedGenerator =
197 new AtomicLong(getInitialDefaultSeed());
198
199 /**
200 * The seed, updated only via method nextSeed.
201 */
202 private long seed;
203
204 /**
205 * The constant value added to seed (mod George) on each update.
206 */
207 private final long gamma;
208
209 /**
210 * The next seed to use for splits. Propagated using
211 * addGammaModGeorge across instances.
212 */
213 private final long nextSplit;
214
215 /**
216 * Adds the given gamma value, g, to the given seed value s, mod
217 * George (2^64+13). We regard s and g as unsigned values
218 * (ranging from 0 to 2^64-1). We add g to s either once or twice
219 * (mod George) as necessary to produce an (unsigned) result less
220 * than 2^64. We require that g must be at least 13. This
221 * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
222 * George < 2^64; thus we need only a conditional, not a loop,
223 * to be sure of getting a representable value.
224 *
225 * Because Java comparison operators are signed, we implement this
226 * by conceptually offsetting seed values downwards by 2^63, so
227 * 0..13 is represented as Long.MIN_VALUE..BOTTOM13.
228 *
229 * @param s a seed value, viewed as a signed long
230 * @param g a gamma value, 13 <= g (as unsigned)
231 */
232 private static long addGammaModGeorge(long s, long g) {
233 long p = s + g;
234 return (p >= s) ? p : ((p >= BOTTOM13) ? p : p + g) - 13L;
235 }
236
237 /**
238 * Returns a bit-mixed transformation of its argument.
239 * See above for explanation.
240 */
241 private static long mix64(long z) {
242 z ^= (z >>> 33);
243 z *= 0xff51afd7ed558ccdL;
244 z ^= (z >>> 33);
245 z *= 0xc4ceb9fe1a85ec53L;
246 z ^= (z >>> 33);
247 return z;
248 }
249
250 /**
251 * Returns a bit-mixed int transformation of its argument.
252 * See above for explanation.
253 */
254 private static int mix32(long z) {
255 z ^= (z >>> 33);
256 z *= 0xc4ceb9fe1a85ec53L;
257 return (int)(z >>> 32);
258 }
259
260 /**
261 * Returns a 57-bit mixed transformation of its argument. See
262 * above for explanation.
263 */
264 private static long mix57(long z) {
265 z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
266 z &= 0x01FFFFFFFFFFFFFFL;
267 z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
268 z &= 0x01FFFFFFFFFFFFFFL;
269 z ^= (z >>> 31);
270 return z;
271 }
272
273 /**
274 * Internal constructor used by all other constructors and by
275 * method split. Establishes the initial seed for this instance,
276 * and uses the given splitSeed to establish gamma, as well as the
277 * nextSplit to use by this instance. The loop to skip ineligible
278 * gammas very rarely iterates, and does so at most 13 times.
279 */
280 private SplittableRandom(long seed, long splitSeed) {
281 this.seed = seed;
282 long s = splitSeed, g;
283 do { // ensure gamma >= 13, considered as an unsigned integer
284 s += GAMMA_GAMMA;
285 if (s >= GAMMA_PRIME)
286 s -= GAMMA_PRIME;
287 g = mix57(s);
288 } while (g < 13L);
289 this.gamma = g;
290 this.nextSplit = s;
291 }
292
293 /**
294 * Updates in-place and returns seed.
295 * See above for explanation.
296 */
297 private long nextSeed() {
298 return seed = addGammaModGeorge(seed, gamma);
299 }
300
301 /**
302 * Atomically updates and returns next seed for default constructor.
303 */
304 private static long nextDefaultSeed() {
305 long oldSeed, newSeed;
306 do {
307 oldSeed = defaultSeedGenerator.get();
308 newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
309 } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
310 return mix64(newSeed);
311 }
312
313 /**
314 * Returns an initial default seed.
315 */
316 private static long getInitialDefaultSeed() {
317 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
318 long s = (long)(seedBytes[0]) & 0xffL;
319 for (int i = 1; i < 8; ++i)
320 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
321 return s;
322 }
323
324 /*
325 * Internal versions of nextX methods used by streams, as well as
326 * the public nextX(origin, bound) methods. These exist mainly to
327 * avoid the need for multiple versions of stream spliterators
328 * across the different exported forms of streams.
329 */
330
331 /**
332 * The form of nextLong used by LongStream Spliterators. If
333 * origin is greater than bound, acts as unbounded form of
334 * nextLong, else as bounded form.
335 *
336 * @param origin the least value, unless greater than bound
337 * @param bound the upper bound (exclusive), must not equal origin
338 * @return a pseudorandom value
339 */
340 final long internalNextLong(long origin, long bound) {
341 /*
342 * Four Cases:
343 *
344 * 1. If the arguments indicate unbounded form, act as
345 * nextLong().
346 *
347 * 2. If the range is an exact power of two, apply the
348 * associated bit mask.
349 *
350 * 3. If the range is positive, loop to avoid potential bias
351 * when the implicit nextLong() bound (2<sup>64</sup>) is not
352 * evenly divisible by the range. The loop rejects candidates
353 * computed from otherwise over-represented values. The
354 * expected number of iterations under an ideal generator
355 * varies from 1 to 2, depending on the bound. The loop itself
356 * takes an unlovable form. Because the first candidate is
357 * already available, we need a break-in-the-middle
358 * construction, which is concisely but cryptically performed
359 * within the while-condition of a body-less for loop.
360 *
361 * 4. Otherwise, the range cannot be represented as a positive
362 * long. The loop repeatedly generates unbounded longs until
363 * obtaining a candidate meeting constraints (with an expected
364 * number of iterations of less than two).
365 */
366
367 long r = mix64(nextSeed());
368 if (origin < bound) {
369 long n = bound - origin, m = n - 1;
370 if ((n & m) == 0L) // power of two
371 r = (r & m) + origin;
372 else if (n > 0L) { // reject over-represented candidates
373 for (long u = r >>> 1; // ensure nonnegative
374 u + m - (r = u % n) < 0L; // rejection check
375 u = mix64(nextSeed()) >>> 1) // retry
376 ;
377 r += origin;
378 }
379 else { // range not representable as long
380 while (r < origin || r >= bound)
381 r = mix64(nextSeed());
382 }
383 }
384 return r;
385 }
386
387 /**
388 * The form of nextInt used by IntStream Spliterators.
389 * Exactly the same as long version, except for types.
390 *
391 * @param origin the least value, unless greater than bound
392 * @param bound the upper bound (exclusive), must not equal origin
393 * @return a pseudorandom value
394 */
395 final int internalNextInt(int origin, int bound) {
396 int r = mix32(nextSeed());
397 if (origin < bound) {
398 int n = bound - origin, m = n - 1;
399 if ((n & m) == 0)
400 r = (r & m) + origin;
401 else if (n > 0) {
402 for (int u = r >>> 1;
403 u + m - (r = u % n) < 0;
404 u = mix32(nextSeed()) >>> 1)
405 ;
406 r += origin;
407 }
408 else {
409 while (r < origin || r >= bound)
410 r = mix32(nextSeed());
411 }
412 }
413 return r;
414 }
415
416 /**
417 * The form of nextDouble used by DoubleStream Spliterators.
418 *
419 * @param origin the least value, unless greater than bound
420 * @param bound the upper bound (exclusive), must not equal origin
421 * @return a pseudorandom value
422 */
423 final double internalNextDouble(double origin, double bound) {
424 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
425 if (origin < bound) {
426 r = r * (bound - origin) + origin;
427 if (r >= bound) // correct for rounding
428 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
429 }
430 return r;
431 }
432
433 /* ---------------- public methods ---------------- */
434
435 /**
436 * Creates a new SplittableRandom instance using the specified
437 * initial seed. SplittableRandom instances created with the same
438 * seed in the same program generate identical sequences of values.
439 *
440 * @param seed the initial seed
441 */
442 public SplittableRandom(long seed) {
443 this(seed, 0L);
444 }
445
446 /**
447 * Creates a new SplittableRandom instance that is likely to
448 * generate sequences of values that are statistically independent
449 * of those of any other instances in the current program; and
450 * may, and typically does, vary across program invocations.
451 */
452 public SplittableRandom() {
453 this(nextDefaultSeed(), GAMMA_GAMMA);
454 }
455
456 /**
457 * Constructs and returns a new SplittableRandom instance that
458 * shares no mutable state with this instance. However, with very
459 * high probability, the set of values collectively generated by
460 * the two objects has the same statistical properties as if the
461 * same quantity of values were generated by a single thread using
462 * a single SplittableRandom object. Either or both of the two
463 * objects may be further split using the {@code split()} method,
464 * and the same expected statistical properties apply to the
465 * entire set of generators constructed by such recursive
466 * splitting.
467 *
468 * @return the new SplittableRandom instance
469 */
470 public SplittableRandom split() {
471 return new SplittableRandom(nextSeed(), nextSplit);
472 }
473
474 /**
475 * Returns a pseudorandom {@code int} value.
476 *
477 * @return a pseudorandom {@code int} value
478 */
479 public int nextInt() {
480 return mix32(nextSeed());
481 }
482
483 /**
484 * Returns a pseudorandom {@code int} value between zero (inclusive)
485 * and the specified bound (exclusive).
486 *
487 * @param bound the bound on the random number to be returned. Must be
488 * positive.
489 * @return a pseudorandom {@code int} value between zero
490 * (inclusive) and the bound (exclusive)
491 * @throws IllegalArgumentException if the bound is less than zero
492 */
493 public int nextInt(int bound) {
494 if (bound <= 0)
495 throw new IllegalArgumentException("bound must be positive");
496 // Specialize internalNextInt for origin 0
497 int r = mix32(nextSeed());
498 int m = bound - 1;
499 if ((bound & m) == 0) // power of two
500 r &= m;
501 else { // reject over-represented candidates
502 for (int u = r >>> 1;
503 u + m - (r = u % bound) < 0;
504 u = mix32(nextSeed()) >>> 1)
505 ;
506 }
507 return r;
508 }
509
510 /**
511 * Returns a pseudorandom {@code int} value between the specified
512 * origin (inclusive) and the specified bound (exclusive).
513 *
514 * @param origin the least value returned
515 * @param bound the upper bound (exclusive)
516 * @return a pseudorandom {@code int} value between the origin
517 * (inclusive) and the bound (exclusive)
518 * @throws IllegalArgumentException if {@code origin} is greater than
519 * or equal to {@code bound}
520 */
521 public int nextInt(int origin, int bound) {
522 if (origin >= bound)
523 throw new IllegalArgumentException("bound must be greater than origin");
524 return internalNextInt(origin, bound);
525 }
526
527 /**
528 * Returns a pseudorandom {@code long} value.
529 *
530 * @return a pseudorandom {@code long} value
531 */
532 public long nextLong() {
533 return mix64(nextSeed());
534 }
535
536 /**
537 * Returns a pseudorandom {@code long} value between zero (inclusive)
538 * and the specified bound (exclusive).
539 *
540 * @param bound the bound on the random number to be returned. Must be
541 * positive.
542 * @return a pseudorandom {@code long} value between zero
543 * (inclusive) and the bound (exclusive)
544 * @throws IllegalArgumentException if {@code bound} is less than zero
545 */
546 public long nextLong(long bound) {
547 if (bound <= 0)
548 throw new IllegalArgumentException("bound must be positive");
549 // Specialize internalNextLong for origin 0
550 long r = mix64(nextSeed());
551 long m = bound - 1;
552 if ((bound & m) == 0L) // power of two
553 r &= m;
554 else { // reject over-represented candidates
555 for (long u = r >>> 1;
556 u + m - (r = u % bound) < 0L;
557 u = mix64(nextSeed()) >>> 1)
558 ;
559 }
560 return r;
561 }
562
563 /**
564 * Returns a pseudorandom {@code long} value between the specified
565 * origin (inclusive) and the specified bound (exclusive).
566 *
567 * @param origin the least value returned
568 * @param bound the upper bound (exclusive)
569 * @return a pseudorandom {@code long} value between the origin
570 * (inclusive) and the bound (exclusive)
571 * @throws IllegalArgumentException if {@code origin} is greater than
572 * or equal to {@code bound}
573 */
574 public long nextLong(long origin, long bound) {
575 if (origin >= bound)
576 throw new IllegalArgumentException("bound must be greater than origin");
577 return internalNextLong(origin, bound);
578 }
579
580 /**
581 * Returns a pseudorandom {@code double} value between zero
582 * (inclusive) and one (exclusive).
583 *
584 * @return a pseudorandom {@code double} value between zero
585 * (inclusive) and one (exclusive)
586 */
587 public double nextDouble() {
588 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
589 }
590
591 /**
592 * Returns a pseudorandom {@code double} value between 0.0
593 * (inclusive) and the specified bound (exclusive).
594 *
595 * @param bound the bound on the random number to be returned. Must be
596 * positive.
597 * @return a pseudorandom {@code double} value between zero
598 * (inclusive) and the bound (exclusive)
599 * @throws IllegalArgumentException if {@code bound} is less than zero
600 */
601 public double nextDouble(double bound) {
602 if (!(bound > 0.0))
603 throw new IllegalArgumentException("bound must be positive");
604 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
605 return (result < bound) ? result : // correct for rounding
606 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
607 }
608
609 /**
610 * Returns a pseudorandom {@code double} value between the specified
611 * origin (inclusive) and bound (exclusive).
612 *
613 * @param origin the least value returned
614 * @param bound the upper bound
615 * @return a pseudorandom {@code double} value between the origin
616 * (inclusive) and the bound (exclusive)
617 * @throws IllegalArgumentException if {@code origin} is greater than
618 * or equal to {@code bound}
619 */
620 public double nextDouble(double origin, double bound) {
621 if (!(origin < bound))
622 throw new IllegalArgumentException("bound must be greater than origin");
623 return internalNextDouble(origin, bound);
624 }
625
626 /**
627 * Returns a pseudorandom {@code boolean} value.
628 *
629 * @return a pseudorandom {@code boolean} value
630 */
631 public boolean nextBoolean() {
632 return mix32(nextSeed()) < 0;
633 }
634
635 // stream methods, coded in a way intended to better isolate for
636 // maintenance purposes the small differences across forms.
637
638 /**
639 * Returns a stream producing the given {@code streamSize} number of
640 * pseudorandom {@code int} values.
641 *
642 * @param streamSize the number of values to generate
643 * @return a stream of pseudorandom {@code int} values
644 * @throws IllegalArgumentException if {@code streamSize} is
645 * less than zero
646 */
647 public IntStream ints(long streamSize) {
648 if (streamSize < 0L)
649 throw new IllegalArgumentException("negative Stream size");
650 return StreamSupport.intStream
651 (new RandomIntsSpliterator
652 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
653 false);
654 }
655
656 /**
657 * Returns an effectively unlimited stream of pseudorandom {@code int}
658 * values.
659 *
660 * @implNote This method is implemented to be equivalent to {@code
661 * ints(Long.MAX_VALUE)}.
662 *
663 * @return a stream of pseudorandom {@code int} values
664 */
665 public IntStream ints() {
666 return StreamSupport.intStream
667 (new RandomIntsSpliterator
668 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
669 false);
670 }
671
672 /**
673 * Returns a stream producing the given {@code streamSize} number of
674 * pseudorandom {@code int} values, each conforming to the given
675 * origin and bound.
676 *
677 * @param streamSize the number of values to generate
678 * @param randomNumberOrigin the origin of each random value
679 * @param randomNumberBound the bound of each random value
680 * @return a stream of pseudorandom {@code int} values,
681 * each with the given origin and bound
682 * @throws IllegalArgumentException if {@code streamSize} is
683 * less than zero, or {@code randomNumberOrigin}
684 * is greater than or equal to {@code randomNumberBound}
685 */
686 public IntStream ints(long streamSize, int randomNumberOrigin,
687 int randomNumberBound) {
688 if (streamSize < 0L)
689 throw new IllegalArgumentException("negative Stream size");
690 if (randomNumberOrigin >= randomNumberBound)
691 throw new IllegalArgumentException("bound must be greater than origin");
692 return StreamSupport.intStream
693 (new RandomIntsSpliterator
694 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
695 false);
696 }
697
698 /**
699 * Returns an effectively unlimited stream of pseudorandom {@code
700 * int} values, each conforming to the given origin and bound.
701 *
702 * @implNote This method is implemented to be equivalent to {@code
703 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
704 *
705 * @param randomNumberOrigin the origin of each random value
706 * @param randomNumberBound the bound of each random value
707 * @return a stream of pseudorandom {@code int} values,
708 * each with the given origin and bound
709 * @throws IllegalArgumentException if {@code randomNumberOrigin}
710 * is greater than or equal to {@code randomNumberBound}
711 */
712 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
713 if (randomNumberOrigin >= randomNumberBound)
714 throw new IllegalArgumentException("bound must be greater than origin");
715 return StreamSupport.intStream
716 (new RandomIntsSpliterator
717 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
718 false);
719 }
720
721 /**
722 * Returns a stream producing the given {@code streamSize} number of
723 * pseudorandom {@code long} values.
724 *
725 * @param streamSize the number of values to generate
726 * @return a stream of pseudorandom {@code long} values
727 * @throws IllegalArgumentException if {@code streamSize} is
728 * less than zero
729 */
730 public LongStream longs(long streamSize) {
731 if (streamSize < 0L)
732 throw new IllegalArgumentException("negative Stream size");
733 return StreamSupport.longStream
734 (new RandomLongsSpliterator
735 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
736 false);
737 }
738
739 /**
740 * Returns an effectively unlimited stream of pseudorandom {@code long}
741 * values.
742 *
743 * @implNote This method is implemented to be equivalent to {@code
744 * longs(Long.MAX_VALUE)}.
745 *
746 * @return a stream of pseudorandom {@code long} values
747 */
748 public LongStream longs() {
749 return StreamSupport.longStream
750 (new RandomLongsSpliterator
751 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
752 false);
753 }
754
755 /**
756 * Returns a stream producing the given {@code streamSize} number of
757 * pseudorandom {@code long} values, each conforming to the
758 * given origin and bound.
759 *
760 * @param streamSize the number of values to generate
761 * @param randomNumberOrigin the origin of each random value
762 * @param randomNumberBound the bound of each random value
763 * @return a stream of pseudorandom {@code long} values,
764 * each with the given origin and bound
765 * @throws IllegalArgumentException if {@code streamSize} is
766 * less than zero, or {@code randomNumberOrigin}
767 * is greater than or equal to {@code randomNumberBound}
768 */
769 public LongStream longs(long streamSize, long randomNumberOrigin,
770 long randomNumberBound) {
771 if (streamSize < 0L)
772 throw new IllegalArgumentException("negative Stream size");
773 if (randomNumberOrigin >= randomNumberBound)
774 throw new IllegalArgumentException("bound must be greater than origin");
775 return StreamSupport.longStream
776 (new RandomLongsSpliterator
777 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
778 false);
779 }
780
781 /**
782 * Returns an effectively unlimited stream of pseudorandom {@code
783 * long} values, each conforming to the given origin and bound.
784 *
785 * @implNote This method is implemented to be equivalent to {@code
786 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
787 *
788 * @param randomNumberOrigin the origin of each random value
789 * @param randomNumberBound the bound of each random value
790 * @return a stream of pseudorandom {@code long} values,
791 * each with the given origin and bound
792 * @throws IllegalArgumentException if {@code randomNumberOrigin}
793 * is greater than or equal to {@code randomNumberBound}
794 */
795 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
796 if (randomNumberOrigin >= randomNumberBound)
797 throw new IllegalArgumentException("bound must be greater than origin");
798 return StreamSupport.longStream
799 (new RandomLongsSpliterator
800 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
801 false);
802 }
803
804 /**
805 * Returns a stream producing the given {@code streamSize} number of
806 * pseudorandom {@code double} values, each between zero
807 * (inclusive) and one (exclusive).
808 *
809 * @param streamSize the number of values to generate
810 * @return a stream of {@code double} values
811 * @throws IllegalArgumentException if {@code streamSize} is
812 * less than zero
813 */
814 public DoubleStream doubles(long streamSize) {
815 if (streamSize < 0L)
816 throw new IllegalArgumentException("negative Stream size");
817 return StreamSupport.doubleStream
818 (new RandomDoublesSpliterator
819 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
820 false);
821 }
822
823 /**
824 * Returns an effectively unlimited stream of pseudorandom {@code
825 * double} values, each between zero (inclusive) and one
826 * (exclusive).
827 *
828 * @implNote This method is implemented to be equivalent to {@code
829 * doubles(Long.MAX_VALUE)}.
830 *
831 * @return a stream of pseudorandom {@code double} values
832 */
833 public DoubleStream doubles() {
834 return StreamSupport.doubleStream
835 (new RandomDoublesSpliterator
836 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
837 false);
838 }
839
840 /**
841 * Returns a stream producing the given {@code streamSize} number of
842 * pseudorandom {@code double} values, each conforming to the
843 * given origin and bound.
844 *
845 * @param streamSize the number of values to generate
846 * @param randomNumberOrigin the origin of each random value
847 * @param randomNumberBound the bound of each random value
848 * @return a stream of pseudorandom {@code double} values,
849 * each with the given origin and bound
850 * @throws IllegalArgumentException if {@code streamSize} is
851 * less than zero
852 * @throws IllegalArgumentException if {@code randomNumberOrigin}
853 * is greater than or equal to {@code randomNumberBound}
854 */
855 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
856 double randomNumberBound) {
857 if (streamSize < 0L)
858 throw new IllegalArgumentException("negative Stream size");
859 if (!(randomNumberOrigin < randomNumberBound))
860 throw new IllegalArgumentException("bound must be greater than origin");
861 return StreamSupport.doubleStream
862 (new RandomDoublesSpliterator
863 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
864 false);
865 }
866
867 /**
868 * Returns an effectively unlimited stream of pseudorandom {@code
869 * double} values, each conforming to the given origin and bound.
870 *
871 * @implNote This method is implemented to be equivalent to {@code
872 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
873 *
874 * @param randomNumberOrigin the origin of each random value
875 * @param randomNumberBound the bound of each random value
876 * @return a stream of pseudorandom {@code double} values,
877 * each with the given origin and bound
878 * @throws IllegalArgumentException if {@code randomNumberOrigin}
879 * is greater than or equal to {@code randomNumberBound}
880 */
881 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
882 if (!(randomNumberOrigin < randomNumberBound))
883 throw new IllegalArgumentException("bound must be greater than origin");
884 return StreamSupport.doubleStream
885 (new RandomDoublesSpliterator
886 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
887 false);
888 }
889
890 /**
891 * Spliterator for int streams. We multiplex the four int
892 * versions into one class by treating a bound less than origin as
893 * unbounded, and also by treating "infinite" as equivalent to
894 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
895 * approach. The long and double versions of this class are
896 * identical except for types.
897 */
898 static final class RandomIntsSpliterator implements Spliterator.OfInt {
899 final SplittableRandom rng;
900 long index;
901 final long fence;
902 final int origin;
903 final int bound;
904 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
905 int origin, int bound) {
906 this.rng = rng; this.index = index; this.fence = fence;
907 this.origin = origin; this.bound = bound;
908 }
909
910 public RandomIntsSpliterator trySplit() {
911 long i = index, m = (i + fence) >>> 1;
912 return (m <= i) ? null :
913 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
914 }
915
916 public long estimateSize() {
917 return fence - index;
918 }
919
920 public int characteristics() {
921 return (Spliterator.SIZED | Spliterator.SUBSIZED |
922 Spliterator.NONNULL | Spliterator.IMMUTABLE);
923 }
924
925 public boolean tryAdvance(IntConsumer consumer) {
926 if (consumer == null) throw new NullPointerException();
927 long i = index, f = fence;
928 if (i < f) {
929 consumer.accept(rng.internalNextInt(origin, bound));
930 index = i + 1;
931 return true;
932 }
933 return false;
934 }
935
936 public void forEachRemaining(IntConsumer consumer) {
937 if (consumer == null) throw new NullPointerException();
938 long i = index, f = fence;
939 if (i < f) {
940 index = f;
941 int o = origin, b = bound;
942 do {
943 consumer.accept(rng.internalNextInt(o, b));
944 } while (++i < f);
945 }
946 }
947 }
948
949 /**
950 * Spliterator for long streams.
951 */
952 static final class RandomLongsSpliterator implements Spliterator.OfLong {
953 final SplittableRandom rng;
954 long index;
955 final long fence;
956 final long origin;
957 final long bound;
958 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
959 long origin, long bound) {
960 this.rng = rng; this.index = index; this.fence = fence;
961 this.origin = origin; this.bound = bound;
962 }
963
964 public RandomLongsSpliterator trySplit() {
965 long i = index, m = (i + fence) >>> 1;
966 return (m <= i) ? null :
967 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
968 }
969
970 public long estimateSize() {
971 return fence - index;
972 }
973
974 public int characteristics() {
975 return (Spliterator.SIZED | Spliterator.SUBSIZED |
976 Spliterator.NONNULL | Spliterator.IMMUTABLE);
977 }
978
979 public boolean tryAdvance(LongConsumer consumer) {
980 if (consumer == null) throw new NullPointerException();
981 long i = index, f = fence;
982 if (i < f) {
983 consumer.accept(rng.internalNextLong(origin, bound));
984 index = i + 1;
985 return true;
986 }
987 return false;
988 }
989
990 public void forEachRemaining(LongConsumer consumer) {
991 if (consumer == null) throw new NullPointerException();
992 long i = index, f = fence;
993 if (i < f) {
994 index = f;
995 long o = origin, b = bound;
996 do {
997 consumer.accept(rng.internalNextLong(o, b));
998 } while (++i < f);
999 }
1000 }
1001
1002 }
1003
1004 /**
1005 * Spliterator for double streams.
1006 */
1007 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
1008 final SplittableRandom rng;
1009 long index;
1010 final long fence;
1011 final double origin;
1012 final double bound;
1013 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
1014 double origin, double bound) {
1015 this.rng = rng; this.index = index; this.fence = fence;
1016 this.origin = origin; this.bound = bound;
1017 }
1018
1019 public RandomDoublesSpliterator trySplit() {
1020 long i = index, m = (i + fence) >>> 1;
1021 return (m <= i) ? null :
1022 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
1023 }
1024
1025 public long estimateSize() {
1026 return fence - index;
1027 }
1028
1029 public int characteristics() {
1030 return (Spliterator.SIZED | Spliterator.SUBSIZED |
1031 Spliterator.NONNULL | Spliterator.IMMUTABLE);
1032 }
1033
1034 public boolean tryAdvance(DoubleConsumer consumer) {
1035 if (consumer == null) throw new NullPointerException();
1036 long i = index, f = fence;
1037 if (i < f) {
1038 consumer.accept(rng.internalNextDouble(origin, bound));
1039 index = i + 1;
1040 return true;
1041 }
1042 return false;
1043 }
1044
1045 public void forEachRemaining(DoubleConsumer consumer) {
1046 if (consumer == null) throw new NullPointerException();
1047 long i = index, f = fence;
1048 if (i < f) {
1049 index = f;
1050 double o = origin, b = bound;
1051 do {
1052 consumer.accept(rng.internalNextDouble(o, b));
1053 } while (++i < f);
1054 }
1055 }
1056 }
1057
1058 }