ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/SplittableRandom.java
Revision: 1.3
Committed: Thu Jul 11 03:31:26 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.2: +1 -1 lines
Log Message:
typo

File Contents

# Content
1 /*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.Spliterator;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.function.DoubleConsumer;
33 import java.util.stream.StreamSupport;
34 import java.util.stream.IntStream;
35 import java.util.stream.LongStream;
36 import java.util.stream.DoubleStream;
37
38
39 /**
40 * A generator of uniform pseudorandom values applicable for use in
41 * (among other contexts) isolated parallel computations that may
42 * generate subtasks. Class SplittableRandom supports methods for
43 * producing pseudorandom numbers of type {@code int}, {@code long},
44 * and {@code double} with similar usages as for class
45 * {@link java.util.Random} but differs in the following ways: <ul>
46 *
47 * <li>Series of generated values pass the DieHarder suite testing
48 * independence and uniformity properties of random number generators.
49 * (Most recently validated with <a
50 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51 * 3.31.1</a>.) These tests validate only the methods for certain
52 * types and ranges, but similar properties are expected to hold, at
53 * least approximately, for others as well. </li>
54 *
55 * <li> Method {@link #split} constructs and returns a new
56 * SplittableRandom instance that shares no mutable state with the
57 * current instance. However, with very high probability, the set of
58 * values collectively generated by the two objects has the same
59 * statistical properties as if the same quantity of values were
60 * generated by a single thread using a single {@code
61 * SplittableRandom} object. </li>
62 *
63 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
64 * They are designed to be split, not shared, across threads. For
65 * example, a {@link java.util.concurrent.ForkJoinTask
66 * fork/join-style} computation using random numbers might include a
67 * construction of the form {@code new
68 * Subtask(aSplittableRandom.split()).fork()}.
69 *
70 * <li>This class provides additional methods for generating random
71 * streams, that employ the above techniques when used in {@code
72 * stream.parallel()} mode.</li>
73 *
74 * </ul>
75 *
76 * @author Guy Steele
77 * @author Doug Lea
78 * @since 1.8
79 */
80 public class SplittableRandom {
81
82 /*
83 * File organization: First the non-public methods that constitute
84 * the main algorithm, then the main public methods, followed by
85 * some custom spliterator classes needed for stream methods.
86 *
87 * Credits: Primary algorithm and code by Guy Steele. Stream
88 * support methods by Doug Lea. Documentation jointly produced
89 * with additional help from Brian Goetz.
90 */
91
92 /*
93 * Implementation Overview.
94 *
95 * This algorithm was inspired by the "DotMix" algorithm by
96 * Leiserson, Schardl, and Sukha "Deterministic Parallel
97 * Random-Number Generation for Dynamic-Multithreading Platforms",
98 * PPoPP 2012, but improves and extends it in several ways.
99 *
100 * The primary update step is simply to add a constant ("gamma")
101 * to the current seed, modulo a prime ("George"). However, the
102 * nextLong and nextInt methods do not return this value, but
103 * instead the results of bit-mixing transformations that produce
104 * more uniformly distributed sequences.
105 *
106 * "George" is the otherwise nameless (because it cannot be
107 * represented) prime number 2^64+13. Using a prime number larger
108 * than can fit in a long ensures that all possible long values
109 * can occur, plus 13 others that just get skipped over when they
110 * are encountered; see method addGammaModGeorge. For this to
111 * work, initial gamma values must be at least 13.
112 *
113 * The value of gamma differs for each instance across a series of
114 * splits, and is generated using a slightly stripped-down variant
115 * of the same algorithm, but operating across calls to split(),
116 * not calls to nextSeed(): Each instance carries the state of
117 * this generator as nextSplit, and uses mix64(nextSplit) as its
118 * own gamma value. Computations of gammas themselves use a fixed
119 * constant as the second argument to the addGammaModGeorge
120 * function, GAMMA_GAMMA, a "genuinely random" number from a
121 * radioactive decay reading (obtained from
122 * http://www.fourmilab.ch/hotbits/) meeting the above range
123 * constraint. Using a fixed constant maintains the invariant that
124 * the value of gamma is the same for every instance that is at
125 * the same split-distance from their common root. (Note: there is
126 * nothing especially magic about obtaining this constant from a
127 * "truly random" physical source rather than just choosing one
128 * arbitrarily; using "hotbits" was merely an aesthetically pleasing
129 * choice. In either case, good statistical behavior of the
130 * algorithm should be, and was, verified by using the DieHarder
131 * test suite.)
132 *
133 * The mix64 bit-mixing function called by nextLong and other
134 * methods computes the same value as the "64-bit finalizer"
135 * function in Austin Appleby's MurmurHash3 algorithm. See
136 * http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
137 * comments: "The constants for the finalizers were generated by a
138 * simple simulated-annealing algorithm, and both avalanche all
139 * bits of 'h' to within 0.25% bias." It also appears to work to
140 * use instead any of the variants proposed by David Stafford at
141 * http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
142 * but these variants have not yet been tested as thoroughly
143 * in the context of the implementation of SplittableRandom.
144 *
145 * The mix32 function used for nextInt just consists of two of the
146 * five lines of mix64; avalanche testing shows that the 64-bit result
147 * has its top 32 bits avalanched well, though not the bottom 32 bits.
148 * DieHarder tests show that it is adequate for generating one
149 * random int from the 64-bit result of nextSeed.
150 *
151 * Support for the default (no-argument) constructor relies on an
152 * AtomicLong (defaultSeedGenerator) to help perform the
153 * equivalent of a split of a statically constructed
154 * SplittableRandom. Unlike other cases, this split must be
155 * performed in a thread-safe manner. We use
156 * AtomicLong.compareAndSet as the (typically) most efficient
157 * mechanism. To bootstrap, we start off using System.nanotime(),
158 * and update using another "genuinely random" constant
159 * DEFAULT_SEED_GAMMA. The default constructor uses GAMMA_GAMMA,
160 * not 0, for its splitSeed argument (addGammaModGeorge(0,
161 * GAMMA_GAMMA) == GAMMA_GAMMA) to reflect that each is split from
162 * this root generator, even though the root is not explicitly
163 * represented as a SplittableRandom.
164 */
165
166 /**
167 * The "genuinely random" value for producing new gamma values.
168 * The value is arbitrary, subject to the requirement that it be
169 * greater or equal to 13.
170 */
171 private static final long GAMMA_GAMMA = 0xF2281E2DBA6606F3L;
172
173 /**
174 * The "genuinely random" seed update value for default constructors.
175 * The value is arbitrary, subject to the requirement that it be
176 * greater or equal to 13.
177 */
178 private static final long DEFAULT_SEED_GAMMA = 0xBD24B73A95FB84D9L;
179
180 /**
181 * The next seed for default constructors.
182 */
183 private static final AtomicLong defaultSeedGenerator =
184 new AtomicLong(System.nanoTime());
185
186 /**
187 * The seed, updated only via method nextSeed.
188 */
189 private long seed;
190
191 /**
192 * The constant value added to seed (mod George) on each update.
193 */
194 private final long gamma;
195
196 /**
197 * The next seed to use for splits. Propagated using
198 * addGammaModGeorge across instances.
199 */
200 private final long nextSplit;
201
202 /**
203 * Internal constructor used by all other constructors and by
204 * method split. Establishes the initial seed for this instance,
205 * and uses the given splitSeed to establish gamma, as well as the
206 * nextSplit to use by this instance.
207 */
208 private SplittableRandom(long seed, long splitSeed) {
209 this.seed = seed;
210 long s = splitSeed, g;
211 do { // ensure gamma >= 13, considered as an unsigned integer
212 s = addGammaModGeorge(s, GAMMA_GAMMA);
213 g = mix64(s);
214 } while (Long.compareUnsigned(g, 13L) < 0);
215 this.gamma = g;
216 this.nextSplit = s;
217 }
218
219 /**
220 * Adds the given gamma value, g, to the given seed value s, mod
221 * George (2^64+13). We regard s and g as unsigned values
222 * (ranging from 0 to 2^64-1). We add g to s either once or twice
223 * (mod George) as necessary to produce an (unsigned) result less
224 * than 2^64. We require that g must be at least 13. This
225 * guarantees that if (s+g) mod George >= 2^64 then (s+g+g) mod
226 * George < 2^64; thus we need only a conditional, not a loop,
227 * to be sure of getting a representable value.
228 *
229 * @param s a seed value
230 * @param g a gamma value, 13 <= g (as unsigned)
231 */
232 private static long addGammaModGeorge(long s, long g) {
233 long p = s + g;
234 if (Long.compareUnsigned(p, g) >= 0)
235 return p;
236 long q = p - 13L;
237 return (Long.compareUnsigned(p, 13L) >= 0) ? q : (q + g);
238 }
239
240 /**
241 * Updates in-place and returns seed.
242 * See above for explanation.
243 */
244 private long nextSeed() {
245 return seed = addGammaModGeorge(seed, gamma);
246 }
247
248 /**
249 * Returns a bit-mixed transformation of its argument.
250 * See above for explanation.
251 */
252 private static long mix64(long z) {
253 z ^= (z >>> 33);
254 z *= 0xff51afd7ed558ccdL;
255 z ^= (z >>> 33);
256 z *= 0xc4ceb9fe1a85ec53L;
257 z ^= (z >>> 33);
258 return z;
259 }
260
261 /**
262 * Returns a bit-mixed int transformation of its argument.
263 * See above for explanation.
264 */
265 private static int mix32(long z) {
266 z ^= (z >>> 33);
267 z *= 0xc4ceb9fe1a85ec53L;
268 return (int)(z >>> 32);
269 }
270
271 /**
272 * Atomically updates and returns next seed for default constructor
273 */
274 private static long nextDefaultSeed() {
275 long oldSeed, newSeed;
276 do {
277 oldSeed = defaultSeedGenerator.get();
278 newSeed = addGammaModGeorge(oldSeed, DEFAULT_SEED_GAMMA);
279 } while (!defaultSeedGenerator.compareAndSet(oldSeed, newSeed));
280 return mix64(newSeed);
281 }
282
283 /*
284 * Internal versions of nextX methods used by streams, as well as
285 * the public nextX(origin, bound) methods. These exist mainly to
286 * avoid the need for multiple versions of stream spliterators
287 * across the different exported forms of streams.
288 */
289
290 /**
291 * The form of nextLong used by LongStream Spliterators. If
292 * origin is greater than bound, acts as unbounded form of
293 * nextLong, else as bounded form.
294 *
295 * @param origin the least value, unless greater than bound
296 * @param bound the upper bound (exclusive), must not equal origin
297 * @return a pseudorandom value
298 */
299 final long internalNextLong(long origin, long bound) {
300 /*
301 * Four Cases:
302 *
303 * 1. If the arguments indicate unbounded form, act as
304 * nextLong().
305 *
306 * 2. If the range is an exact power of two, apply the
307 * associated bit mask.
308 *
309 * 3. If the range is positive, loop to avoid potential bias
310 * when the implicit nextLong() bound (2<sup>64</sup>) is not
311 * evenly divisible by the range. The loop rejects candidates
312 * computed from otherwise over-represented values. The
313 * expected number of iterations under an ideal generator
314 * varies from 1 to 2, depending on the bound.
315 *
316 * 4. Otherwise, the range cannot be represented as a positive
317 * long. Repeatedly generate unbounded longs until obtaining
318 * a candidate meeting constraints (with an expected number of
319 * iterations of less than two).
320 */
321
322 long r = mix64(nextSeed());
323 if (origin < bound) {
324 long n = bound - origin, m = n - 1;
325 if ((n & m) == 0L) // power of two
326 r = (r & m) + origin;
327 else if (n > 0) { // reject over-represented candidates
328 for (long u = r >>> 1; // ensure nonnegative
329 u + m - (r = u % n) < 0L; // reject
330 u = mix64(nextSeed()) >>> 1) // retry
331 ;
332 r += origin;
333 }
334 else { // range not representable as long
335 while (r < origin || r >= bound)
336 r = mix64(nextSeed());
337 }
338 }
339 return r;
340 }
341
342 /**
343 * The form of nextInt used by IntStream Spliterators.
344 * Exactly the same as long version, except for types.
345 *
346 * @param origin the least value, unless greater than bound
347 * @param bound the upper bound (exclusive), must not equal origin
348 * @return a pseudorandom value
349 */
350 final int internalNextInt(int origin, int bound) {
351 int r = mix32(nextSeed());
352 if (origin < bound) {
353 int n = bound - origin, m = n - 1;
354 if ((n & m) == 0L)
355 r = (r & m) + origin;
356 else if (n > 0) {
357 for (int u = r >>> 1;
358 u + m - (r = u % n) < 0L;
359 u = mix32(nextSeed()) >>> 1)
360 ;
361 r += origin;
362 }
363 else {
364 while (r < origin || r >= bound)
365 r = mix32(nextSeed());
366 }
367 }
368 return r;
369 }
370
371 /**
372 * The form of nextDouble used by DoubleStream Spliterators.
373 *
374 * @param origin the least value, unless greater than bound
375 * @param bound the upper bound (exclusive), must not equal origin
376 * @return a pseudorandom value
377 */
378 final double internalNextDouble(double origin, double bound) {
379 long bits = (1023L << 52) | (nextLong() >>> 12);
380 double r = Double.longBitsToDouble(bits) - 1.0;
381 if (origin < bound) {
382 r = r * (bound - origin) + origin;
383 if (r == bound) // correct for rounding
384 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
385 }
386 return r;
387 }
388
389 /* ---------------- public methods ---------------- */
390
391 /**
392 * Creates a new SplittableRandom instance using the given initial
393 * seed. Two SplittableRandom instances created with the same seed
394 * generate identical sequences of values.
395 *
396 * @param seed the initial seed
397 */
398 public SplittableRandom(long seed) {
399 this(seed, 0);
400 }
401
402 /**
403 * Creates a new SplittableRandom instance that is likely to
404 * generate sequences of values that are statistically independent
405 * of those of any other instances in the current program; and
406 * may, and typically does, vary across program invocations.
407 */
408 public SplittableRandom() {
409 this(nextDefaultSeed(), GAMMA_GAMMA);
410 }
411
412 /**
413 * Constructs and returns a new SplittableRandom instance that
414 * shares no mutable state with this instance. However, with very
415 * high probability, the set of values collectively generated by
416 * the two objects has the same statistical properties as if the
417 * same quantity of values were generated by a single thread using
418 * a single SplittableRandom object. Either or both of the two
419 * objects may be further split using the {@code split()} method,
420 * and the same expected statistical properties apply to the
421 * entire set of generators constructed by such recursive
422 * splitting.
423 *
424 * @return the new SplittableRandom instance
425 */
426 public SplittableRandom split() {
427 return new SplittableRandom(nextSeed(), nextSplit);
428 }
429
430 /**
431 * Returns a pseudorandom {@code int} value.
432 *
433 * @return a pseudorandom value
434 */
435 public int nextInt() {
436 return mix32(nextSeed());
437 }
438
439 /**
440 * Returns a pseudorandom {@code int} value between 0 (inclusive)
441 * and the specified bound (exclusive).
442 *
443 * @param bound the bound on the random number to be returned. Must be
444 * positive.
445 * @return a pseudorandom {@code int} value between {@code 0}
446 * (inclusive) and the bound (exclusive).
447 * @exception IllegalArgumentException if the bound is not positive
448 */
449 public int nextInt(int bound) {
450 if (bound <= 0)
451 throw new IllegalArgumentException("bound must be positive");
452 // Specialize internalNextInt for origin 0
453 int r = mix32(nextSeed());
454 int m = bound - 1;
455 if ((bound & m) == 0L) // power of two
456 r &= m;
457 else { // reject over-represented candidates
458 for (int u = r >>> 1;
459 u + m - (r = u % bound) < 0L;
460 u = mix32(nextSeed()) >>> 1)
461 ;
462 }
463 return r;
464 }
465
466 /**
467 * Returns a pseudorandom {@code int} value between the specified
468 * origin (inclusive) and the specified bound (exclusive).
469 *
470 * @param origin the least value returned
471 * @param bound the upper bound (exclusive)
472 * @return a pseudorandom {@code int} value between the origin
473 * (inclusive) and the bound (exclusive).
474 * @exception IllegalArgumentException if {@code origin} is greater than
475 * or equal to {@code bound}
476 */
477 public int nextInt(int origin, int bound) {
478 if (origin >= bound)
479 throw new IllegalArgumentException("bound must be greater than origin");
480 return internalNextInt(origin, bound);
481 }
482
483 /**
484 * Returns a pseudorandom {@code long} value.
485 *
486 * @return a pseudorandom value
487 */
488 public long nextLong() {
489 return mix64(nextSeed());
490 }
491
492 /**
493 * Returns a pseudorandom {@code long} value between 0 (inclusive)
494 * and the specified bound (exclusive).
495 *
496 * @param bound the bound on the random number to be returned. Must be
497 * positive.
498 * @return a pseudorandom {@code long} value between {@code 0}
499 * (inclusive) and the bound (exclusive).
500 * @exception IllegalArgumentException if the bound is not positive
501 */
502 public long nextLong(long bound) {
503 if (bound <= 0)
504 throw new IllegalArgumentException("bound must be positive");
505 // Specialize internalNextLong for origin 0
506 long r = mix64(nextSeed());
507 long m = bound - 1;
508 if ((bound & m) == 0L) // power of two
509 r &= m;
510 else { // reject over-represented candidates
511 for (long u = r >>> 1;
512 u + m - (r = u % bound) < 0L;
513 u = mix64(nextSeed()) >>> 1)
514 ;
515 }
516 return r;
517 }
518
519 /**
520 * Returns a pseudorandom {@code long} value between the specified
521 * origin (inclusive) and the specified bound (exclusive).
522 *
523 * @param origin the least value returned
524 * @param bound the upper bound (exclusive)
525 * @return a pseudorandom {@code long} value between the origin
526 * (inclusive) and the bound (exclusive).
527 * @exception IllegalArgumentException if {@code origin} is greater than
528 * or equal to {@code bound}
529 */
530 public long nextLong(long origin, long bound) {
531 if (origin >= bound)
532 throw new IllegalArgumentException("bound must be greater than origin");
533 return internalNextLong(origin, bound);
534 }
535
536 /**
537 * Returns a pseudorandom {@code double} value between {@code 0.0}
538 * (inclusive) and {@code 1.0} (exclusive).
539 *
540 * @return a pseudorandom value between {@code 0.0}
541 * (inclusive) and {@code 1.0} (exclusive)
542 */
543 public double nextDouble() {
544 long bits = (1023L << 52) | (nextLong() >>> 12);
545 return Double.longBitsToDouble(bits) - 1.0;
546 }
547
548 /**
549 * Returns a pseudorandom {@code double} value between 0.0
550 * (inclusive) and the specified bound (exclusive).
551 *
552 * @param bound the bound on the random number to be returned. Must be
553 * positive.
554 * @return a pseudorandom {@code double} value between {@code 0.0}
555 * (inclusive) and the bound (exclusive).
556 * @throws IllegalArgumentException if {@code bound} is not positive
557 */
558 public double nextDouble(double bound) {
559 if (bound <= 0.0)
560 throw new IllegalArgumentException("bound must be positive");
561 double result = nextDouble() * bound;
562 return (result < bound) ? result : // correct for rounding
563 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
564 }
565
566 /**
567 * Returns a pseudorandom {@code double} value between the given
568 * origin (inclusive) and bound (exclusive).
569 *
570 * @param origin the least value returned
571 * @param bound the upper bound
572 * @return a pseudorandom {@code double} value between the origin
573 * (inclusive) and the bound (exclusive).
574 * @throws IllegalArgumentException if {@code origin} is greater than
575 * or equal to {@code bound}
576 */
577 public double nextDouble(double origin, double bound) {
578 if (origin >= bound)
579 throw new IllegalArgumentException("bound must be greater than origin");
580 return internalNextDouble(origin, bound);
581 }
582
583 // stream methods, coded in a way intended to better isolate for
584 // maintenance purposes the small differences across forms.
585
586 /**
587 * Returns a stream with the given {@code streamSize} number of
588 * pseudorandom {@code int} values.
589 *
590 * @param streamSize the number of values to generate
591 * @return a stream of pseudorandom {@code int} values
592 * @throws IllegalArgumentException if {@code streamSize} is
593 * less than zero
594 */
595 public IntStream ints(long streamSize) {
596 if (streamSize < 0L)
597 throw new IllegalArgumentException("negative Stream size");
598 return StreamSupport.intStream
599 (new RandomIntsSpliterator
600 (this, 0L, streamSize, Integer.MAX_VALUE, 0),
601 false);
602 }
603
604 /**
605 * Returns an effectively unlimited stream of pseudorandom {@code int}
606 * values
607 *
608 * @implNote This method is implemented to be equivalent to {@code
609 * ints(Long.MAX_VALUE)}.
610 *
611 * @return a stream of pseudorandom {@code int} values
612 */
613 public IntStream ints() {
614 return StreamSupport.intStream
615 (new RandomIntsSpliterator
616 (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
617 false);
618 }
619
620 /**
621 * Returns a stream with the given {@code streamSize} number of
622 * pseudorandom {@code int} values, each conforming to the given
623 * origin and bound.
624 *
625 * @param streamSize the number of values to generate
626 * @param randomNumberOrigin the origin of each random value
627 * @param randomNumberBound the bound of each random value
628 * @return a stream of pseudorandom {@code int} values,
629 * each with the given origin and bound.
630 * @throws IllegalArgumentException if {@code streamSize} is
631 * less than zero.
632 * @throws IllegalArgumentException if {@code randomNumberOrigin}
633 * is greater than or equal to {@code randomNumberBound}
634 */
635 public IntStream ints(long streamSize, int randomNumberOrigin,
636 int randomNumberBound) {
637 if (streamSize < 0L)
638 throw new IllegalArgumentException("negative Stream size");
639 if (randomNumberOrigin >= randomNumberBound)
640 throw new IllegalArgumentException("bound must be greater than origin");
641 return StreamSupport.intStream
642 (new RandomIntsSpliterator
643 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
644 false);
645 }
646
647 /**
648 * Returns an effectively unlimited stream of pseudorandom {@code
649 * int} values, each conforming to the given origin and bound.
650 *
651 * @implNote This method is implemented to be equivalent to {@code
652 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
653 *
654 * @param randomNumberOrigin the origin of each random value
655 * @param randomNumberBound the bound of each random value
656 * @return a stream of pseudorandom {@code int} values,
657 * each with the given origin and bound.
658 * @throws IllegalArgumentException if {@code randomNumberOrigin}
659 * is greater than or equal to {@code randomNumberBound}
660 */
661 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
662 if (randomNumberOrigin >= randomNumberBound)
663 throw new IllegalArgumentException("bound must be greater than origin");
664 return StreamSupport.intStream
665 (new RandomIntsSpliterator
666 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
667 false);
668 }
669
670 /**
671 * Returns a stream with the given {@code streamSize} number of
672 * pseudorandom {@code long} values.
673 *
674 * @param streamSize the number of values to generate
675 * @return a stream of {@code long} values
676 * @throws IllegalArgumentException if {@code streamSize} is
677 * less than zero
678 */
679 public LongStream longs(long streamSize) {
680 if (streamSize < 0L)
681 throw new IllegalArgumentException("negative Stream size");
682 return StreamSupport.longStream
683 (new RandomLongsSpliterator
684 (this, 0L, streamSize, Long.MAX_VALUE, 0L),
685 false);
686 }
687
688 /**
689 * Returns an effectively unlimited stream of pseudorandom {@code long}
690 * values.
691 *
692 * @implNote This method is implemented to be equivalent to {@code
693 * longs(Long.MAX_VALUE)}.
694 *
695 * @return a stream of pseudorandom {@code long} values
696 */
697 public LongStream longs() {
698 return StreamSupport.longStream
699 (new RandomLongsSpliterator
700 (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
701 false);
702 }
703
704 /**
705 * Returns a stream with the given {@code streamSize} number of
706 * pseudorandom {@code long} values, each conforming to the
707 * given origin and bound.
708 *
709 * @param streamSize the number of values to generate
710 * @param randomNumberOrigin the origin of each random value
711 * @param randomNumberBound the bound of each random value
712 * @return a stream of pseudorandom {@code long} values,
713 * each with the given origin and bound.
714 * @throws IllegalArgumentException if {@code streamSize} is
715 * less than zero.
716 * @throws IllegalArgumentException if {@code randomNumberOrigin}
717 * is greater than or equal to {@code randomNumberBound}
718 */
719 public LongStream longs(long streamSize, long randomNumberOrigin,
720 long randomNumberBound) {
721 if (streamSize < 0L)
722 throw new IllegalArgumentException("negative Stream size");
723 if (randomNumberOrigin >= randomNumberBound)
724 throw new IllegalArgumentException("bound must be greater than origin");
725 return StreamSupport.longStream
726 (new RandomLongsSpliterator
727 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
728 false);
729 }
730
731 /**
732 * Returns an effectively unlimited stream of pseudorandom {@code
733 * long} values, each conforming to the given origin and bound.
734 *
735 * @implNote This method is implemented to be equivalent to {@code
736 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
737 *
738 * @param randomNumberOrigin the origin of each random value
739 * @param randomNumberBound the bound of each random value
740 * @return a stream of pseudorandom {@code long} values,
741 * each with the given origin and bound.
742 * @throws IllegalArgumentException if {@code randomNumberOrigin}
743 * is greater than or equal to {@code randomNumberBound}
744 */
745 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
746 if (randomNumberOrigin >= randomNumberBound)
747 throw new IllegalArgumentException("bound must be greater than origin");
748 return StreamSupport.longStream
749 (new RandomLongsSpliterator
750 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
751 false);
752 }
753
754 /**
755 * Returns a stream with the given {@code streamSize} number of
756 * pseudorandom {@code double} values, each between {@code 0.0}
757 * (inclusive) and {@code 1.0} (exclusive).
758 *
759 * @param streamSize the number of values to generate
760 * @return a stream of {@code double} values
761 * @throws IllegalArgumentException if {@code streamSize} is
762 * less than zero
763 */
764 public DoubleStream doubles(long streamSize) {
765 if (streamSize < 0L)
766 throw new IllegalArgumentException("negative Stream size");
767 return StreamSupport.doubleStream
768 (new RandomDoublesSpliterator
769 (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
770 false);
771 }
772
773 /**
774 * Returns an effectively unlimited stream of pseudorandom {@code
775 * double} values, each between {@code 0.0} (inclusive) and {@code
776 * 1.0} (exclusive).
777 *
778 * @implNote This method is implemented to be equivalent to {@code
779 * doubles(Long.MAX_VALUE)}.
780 *
781 * @return a stream of pseudorandom {@code double} values
782 */
783 public DoubleStream doubles() {
784 return StreamSupport.doubleStream
785 (new RandomDoublesSpliterator
786 (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
787 false);
788 }
789
790 /**
791 * Returns a stream with the given {@code streamSize} number of
792 * pseudorandom {@code double} values, each conforming to the
793 * given origin and bound.
794 *
795 * @param streamSize the number of values to generate
796 * @param randomNumberOrigin the origin of each random value
797 * @param randomNumberBound the bound of each random value
798 * @return a stream of pseudorandom {@code double} values,
799 * each with the given origin and bound.
800 * @throws IllegalArgumentException if {@code streamSize} is
801 * less than zero.
802 * @throws IllegalArgumentException if {@code randomNumberOrigin}
803 * is greater than or equal to {@code randomNumberBound}
804 */
805 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
806 double randomNumberBound) {
807 if (streamSize < 0L)
808 throw new IllegalArgumentException("negative Stream size");
809 if (randomNumberOrigin >= randomNumberBound)
810 throw new IllegalArgumentException("bound must be greater than origin");
811 return StreamSupport.doubleStream
812 (new RandomDoublesSpliterator
813 (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
814 false);
815 }
816
817 /**
818 * Returns an effectively unlimited stream of pseudorandom {@code
819 * double} values, each conforming to the given origin and bound.
820 *
821 * @implNote This method is implemented to be equivalent to {@code
822 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
823 *
824 * @param randomNumberOrigin the origin of each random value
825 * @param randomNumberBound the bound of each random value
826 * @return a stream of pseudorandom {@code double} values,
827 * each with the given origin and bound.
828 * @throws IllegalArgumentException if {@code randomNumberOrigin}
829 * is greater than or equal to {@code randomNumberBound}
830 */
831 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
832 if (randomNumberOrigin >= randomNumberBound)
833 throw new IllegalArgumentException("bound must be greater than origin");
834 return StreamSupport.doubleStream
835 (new RandomDoublesSpliterator
836 (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
837 false);
838 }
839
840 /**
841 * Spliterator for int streams. We multiplex the four int
842 * versions into one class by treating and bound < origin as
843 * unbounded, and also by treating "infinite" as equivalent to
844 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
845 * approach. The long and double versions of this class are
846 * identical except for types.
847 */
848 static class RandomIntsSpliterator implements Spliterator.OfInt {
849 final SplittableRandom rng;
850 long index;
851 final long fence;
852 final int origin;
853 final int bound;
854 RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
855 int origin, int bound) {
856 this.rng = rng; this.index = index; this.fence = fence;
857 this.origin = origin; this.bound = bound;
858 }
859
860 public RandomIntsSpliterator trySplit() {
861 long i = index, m = (i + fence) >>> 1;
862 return (m <= i) ? null :
863 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
864 }
865
866 public long estimateSize() {
867 return fence - index;
868 }
869
870 public int characteristics() {
871 return (Spliterator.SIZED | Spliterator.SUBSIZED |
872 Spliterator.ORDERED | Spliterator.NONNULL |
873 Spliterator.IMMUTABLE);
874 }
875
876 public boolean tryAdvance(IntConsumer consumer) {
877 if (consumer == null) throw new NullPointerException();
878 long i = index, f = fence;
879 if (i < f) {
880 consumer.accept(rng.internalNextInt(origin, bound));
881 index = i + 1;
882 return true;
883 }
884 return false;
885 }
886
887 public void forEachRemaining(IntConsumer consumer) {
888 if (consumer == null) throw new NullPointerException();
889 long i = index, f = fence;
890 if (i < f) {
891 index = f;
892 int o = origin, b = bound;
893 do {
894 consumer.accept(rng.internalNextInt(o, b));
895 } while (++i < f);
896 }
897 }
898 }
899
900 /**
901 * Spliterator for long streams.
902 */
903 static class RandomLongsSpliterator implements Spliterator.OfLong {
904 final SplittableRandom rng;
905 long index;
906 final long fence;
907 final long origin;
908 final long bound;
909 RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
910 long origin, long bound) {
911 this.rng = rng; this.index = index; this.fence = fence;
912 this.origin = origin; this.bound = bound;
913 }
914
915 public RandomLongsSpliterator trySplit() {
916 long i = index, m = (i + fence) >>> 1;
917 return (m <= i) ? null :
918 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
919 }
920
921 public long estimateSize() {
922 return fence - index;
923 }
924
925 public int characteristics() {
926 return (Spliterator.SIZED | Spliterator.SUBSIZED |
927 Spliterator.ORDERED | Spliterator.NONNULL |
928 Spliterator.IMMUTABLE);
929 }
930
931 public boolean tryAdvance(LongConsumer consumer) {
932 if (consumer == null) throw new NullPointerException();
933 long i = index, f = fence;
934 if (i < f) {
935 consumer.accept(rng.internalNextLong(origin, bound));
936 index = i + 1;
937 return true;
938 }
939 return false;
940 }
941
942 public void forEachRemaining(LongConsumer consumer) {
943 if (consumer == null) throw new NullPointerException();
944 long i = index, f = fence;
945 if (i < f) {
946 index = f;
947 long o = origin, b = bound;
948 do {
949 consumer.accept(rng.internalNextLong(o, b));
950 } while (++i < f);
951 }
952 }
953
954 }
955
956 /**
957 * Spliterator for double streams.
958 */
959 static class RandomDoublesSpliterator implements Spliterator.OfDouble {
960 final SplittableRandom rng;
961 long index;
962 final long fence;
963 final double origin;
964 final double bound;
965 RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
966 double origin, double bound) {
967 this.rng = rng; this.index = index; this.fence = fence;
968 this.origin = origin; this.bound = bound;
969 }
970
971 public RandomDoublesSpliterator trySplit() {
972 long i = index, m = (i + fence) >>> 1;
973 return (m <= i) ? null :
974 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
975 }
976
977 public long estimateSize() {
978 return fence - index;
979 }
980
981 public int characteristics() {
982 return (Spliterator.SIZED | Spliterator.SUBSIZED |
983 Spliterator.ORDERED | Spliterator.NONNULL |
984 Spliterator.IMMUTABLE);
985 }
986
987 public boolean tryAdvance(DoubleConsumer consumer) {
988 if (consumer == null) throw new NullPointerException();
989 long i = index, f = fence;
990 if (i < f) {
991 consumer.accept(rng.internalNextDouble(origin, bound));
992 index = i + 1;
993 return true;
994 }
995 return false;
996 }
997
998 public void forEachRemaining(DoubleConsumer consumer) {
999 if (consumer == null) throw new NullPointerException();
1000 long i = index, f = fence;
1001 if (i < f) {
1002 index = f;
1003 double o = origin, b = bound;
1004 do {
1005 consumer.accept(rng.internalNextDouble(o, b));
1006 } while (++i < f);
1007 }
1008 }
1009 }
1010
1011 }
1012