ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/TimSort.java
Revision: 1.8
Committed: Fri Jun 1 14:57:28 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.7: +1 -1 lines
Log Message:
fix javadoc formatting

File Contents

# User Rev Content
1 jsr166 1.1 /*
2 dl 1.7 * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
3     * Copyright 2009 Google Inc. All Rights Reserved.
4     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5     *
6     * This code is free software; you can redistribute it and/or modify it
7     * under the terms of the GNU General Public License version 2 only, as
8     * published by the Free Software Foundation. Oracle designates this
9     * particular file as subject to the "Classpath" exception as provided
10     * by Oracle in the LICENSE file that accompanied this code.
11     *
12     * This code is distributed in the hope that it will be useful, but WITHOUT
13     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15     * version 2 for more details (a copy is included in the LICENSE file that
16     * accompanied this code).
17     *
18     * You should have received a copy of the GNU General Public License version
19     * 2 along with this work; if not, write to the Free Software Foundation,
20     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21     *
22     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23     * or visit www.oracle.com if you need additional information or have any
24     * questions.
25 jsr166 1.1 */
26    
27 jsr166 1.3 package java.util;
28 jsr166 1.1
29     /**
30     * A stable, adaptive, iterative mergesort that requires far fewer than
31     * n lg(n) comparisons when running on partially sorted arrays, while
32     * offering performance comparable to a traditional mergesort when run
33     * on random arrays. Like all proper mergesorts, this sort is stable and
34     * runs O(n log n) time (worst case). In the worst case, this sort requires
35     * temporary storage space for n/2 object references; in the best case,
36     * it requires only a small constant amount of space.
37     *
38     * This implementation was adapted from Tim Peters's list sort for
39     * Python, which is described in detail here:
40     *
41     * http://svn.python.org/projects/python/trunk/Objects/listsort.txt
42     *
43     * Tim's C code may be found here:
44     *
45     * http://svn.python.org/projects/python/trunk/Objects/listobject.c
46     *
47     * The underlying techniques are described in this paper (and may have
48     * even earlier origins):
49     *
50     * "Optimistic Sorting and Information Theoretic Complexity"
51     * Peter McIlroy
52     * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
53     * pp 467-474, Austin, Texas, 25-27 January 1993.
54     *
55     * While the API to this class consists solely of static methods, it is
56     * (privately) instantiable; a TimSort instance holds the state of an ongoing
57     * sort, assuming the input array is large enough to warrant the full-blown
58     * TimSort. Small arrays are sorted in place, using a binary insertion sort.
59 jsr166 1.3 *
60     * @author Josh Bloch
61 jsr166 1.1 */
62     class TimSort<T> {
63     /**
64     * This is the minimum sized sequence that will be merged. Shorter
65     * sequences will be lengthened by calling binarySort. If the entire
66     * array is less than this length, no merges will be performed.
67     *
68     * This constant should be a power of two. It was 64 in Tim Peter's C
69     * implementation, but 32 was empirically determined to work better in
70     * this implementation. In the unlikely event that you set this constant
71     * to be a number that's not a power of two, you'll need to change the
72     * {@link #minRunLength} computation.
73     *
74     * If you decrease this constant, you must change the stackLen
75     * computation in the TimSort constructor, or you risk an
76     * ArrayOutOfBounds exception. See listsort.txt for a discussion
77     * of the minimum stack length required as a function of the length
78     * of the array being sorted and the minimum merge sequence length.
79     */
80     private static final int MIN_MERGE = 32;
81    
82     /**
83     * The array being sorted.
84     */
85     private final T[] a;
86    
87     /**
88     * The comparator for this sort.
89     */
90     private final Comparator<? super T> c;
91    
92     /**
93     * When we get into galloping mode, we stay there until both runs win less
94     * often than MIN_GALLOP consecutive times.
95     */
96     private static final int MIN_GALLOP = 7;
97    
98     /**
99     * This controls when we get *into* galloping mode. It is initialized
100     * to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
101     * random data, and lower for highly structured data.
102     */
103     private int minGallop = MIN_GALLOP;
104    
105     /**
106     * Maximum initial size of tmp array, which is used for merging. The array
107     * can grow to accommodate demand.
108     *
109     * Unlike Tim's original C version, we do not allocate this much storage
110     * when sorting smaller arrays. This change was required for performance.
111     */
112     private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
113    
114     /**
115 dl 1.7 * Temp storage for merges. A workspace array may optionally be
116     * provided in constructor, and if so will be used as long as it
117     * is big enough.
118     */
119     private T[] tmp;
120     private int tmpBase; // base of tmp array slice
121     private int tmpLen; // length of tmp array slice
122 jsr166 1.1
123     /**
124     * A stack of pending runs yet to be merged. Run i starts at
125     * address base[i] and extends for len[i] elements. It's always
126     * true (so long as the indices are in bounds) that:
127     *
128     * runBase[i] + runLen[i] == runBase[i + 1]
129     *
130     * so we could cut the storage for this, but it's a minor amount,
131     * and keeping all the info explicit simplifies the code.
132     */
133     private int stackSize = 0; // Number of pending runs on stack
134     private final int[] runBase;
135     private final int[] runLen;
136    
137     /**
138     * Creates a TimSort instance to maintain the state of an ongoing sort.
139     *
140     * @param a the array to be sorted
141     * @param c the comparator to determine the order of the sort
142 dl 1.7 * @param work a workspace array (slice)
143     * @param workBase origin of usable space in work array
144     * @param workLen usable size of work array
145 jsr166 1.1 */
146 dl 1.7 private TimSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
147 jsr166 1.1 this.a = a;
148     this.c = c;
149    
150     // Allocate temp storage (which may be increased later if necessary)
151     int len = a.length;
152 dl 1.7 int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
153     len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
154     if (work == null || workLen < tlen || workBase + tlen > work.length) {
155     @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
156     T[] newArray = (T[])java.lang.reflect.Array.newInstance
157     (a.getClass().getComponentType(), tlen);
158     tmp = newArray;
159     tmpBase = 0;
160     tmpLen = tlen;
161     }
162     else {
163     tmp = work;
164     tmpBase = workBase;
165     tmpLen = workLen;
166     }
167 jsr166 1.1
168     /*
169     * Allocate runs-to-be-merged stack (which cannot be expanded). The
170     * stack length requirements are described in listsort.txt. The C
171     * version always uses the same stack length (85), but this was
172     * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
173     * 100 elements) in Java. Therefore, we use smaller (but sufficiently
174     * large) stack lengths for smaller arrays. The "magic numbers" in the
175     * computation below must be changed if MIN_MERGE is decreased. See
176     * the MIN_MERGE declaration above for more information.
177 dl 1.7 * The maximum value of 49 allows for an array up to length
178     * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
179     * increasing scenario. More explanations are given in section 4 of:
180     * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
181 jsr166 1.1 */
182     int stackLen = (len < 120 ? 5 :
183     len < 1542 ? 10 :
184 dl 1.7 len < 119151 ? 24 : 49);
185 jsr166 1.1 runBase = new int[stackLen];
186     runLen = new int[stackLen];
187     }
188    
189     /*
190 dl 1.7 * The next method (package private and static) constitutes the
191     * entire API of this class.
192 jsr166 1.1 */
193    
194 dl 1.7 /**
195     * Sorts the given range, using the given workspace array slice
196     * for temp storage when possible. This method is designed to be
197     * invoked from public methods (in class Arrays) after performing
198     * any necessary array bounds checks and expanding parameters into
199     * the required forms.
200     *
201     * @param a the array to be sorted
202     * @param lo the index of the first element, inclusive, to be sorted
203     * @param hi the index of the last element, exclusive, to be sorted
204     * @param c the comparator to use
205     * @param work a workspace array (slice)
206     * @param workBase origin of usable space in work array
207     * @param workLen usable size of work array
208     * @since 1.8
209     */
210     static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
211     T[] work, int workBase, int workLen) {
212     assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
213 jsr166 1.1
214     int nRemaining = hi - lo;
215     if (nRemaining < 2)
216     return; // Arrays of size 0 and 1 are always sorted
217    
218     // If array is small, do a "mini-TimSort" with no merges
219     if (nRemaining < MIN_MERGE) {
220 jsr166 1.3 int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
221 jsr166 1.1 binarySort(a, lo, hi, lo + initRunLen, c);
222     return;
223     }
224    
225     /**
226     * March over the array once, left to right, finding natural runs,
227     * extending short natural runs to minRun elements, and merging runs
228     * to maintain stack invariant.
229     */
230 dl 1.7 TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
231 jsr166 1.1 int minRun = minRunLength(nRemaining);
232     do {
233     // Identify next run
234     int runLen = countRunAndMakeAscending(a, lo, hi, c);
235    
236     // If run is short, extend to min(minRun, nRemaining)
237     if (runLen < minRun) {
238     int force = nRemaining <= minRun ? nRemaining : minRun;
239     binarySort(a, lo, lo + force, lo + runLen, c);
240     runLen = force;
241     }
242    
243     // Push run onto pending-run stack, and maybe merge
244     ts.pushRun(lo, runLen);
245     ts.mergeCollapse();
246    
247     // Advance to find next run
248     lo += runLen;
249     nRemaining -= runLen;
250     } while (nRemaining != 0);
251    
252     // Merge all remaining runs to complete sort
253     assert lo == hi;
254     ts.mergeForceCollapse();
255     assert ts.stackSize == 1;
256     }
257    
258     /**
259     * Sorts the specified portion of the specified array using a binary
260     * insertion sort. This is the best method for sorting small numbers
261     * of elements. It requires O(n log n) compares, but O(n^2) data
262     * movement (worst case).
263     *
264     * If the initial part of the specified range is already sorted,
265     * this method can take advantage of it: the method assumes that the
266     * elements from index {@code lo}, inclusive, to {@code start},
267     * exclusive are already sorted.
268     *
269     * @param a the array in which a range is to be sorted
270     * @param lo the index of the first element in the range to be sorted
271     * @param hi the index after the last element in the range to be sorted
272     * @param start the index of the first element in the range that is
273 jsr166 1.5 * not already known to be sorted ({@code lo <= start <= hi})
274 jsr166 1.1 * @param c comparator to used for the sort
275     */
276     @SuppressWarnings("fallthrough")
277     private static <T> void binarySort(T[] a, int lo, int hi, int start,
278     Comparator<? super T> c) {
279     assert lo <= start && start <= hi;
280     if (start == lo)
281     start++;
282     for ( ; start < hi; start++) {
283     T pivot = a[start];
284    
285     // Set left (and right) to the index where a[start] (pivot) belongs
286     int left = lo;
287     int right = start;
288     assert left <= right;
289     /*
290     * Invariants:
291     * pivot >= all in [lo, left).
292     * pivot < all in [right, start).
293     */
294     while (left < right) {
295     int mid = (left + right) >>> 1;
296     if (c.compare(pivot, a[mid]) < 0)
297     right = mid;
298     else
299     left = mid + 1;
300     }
301     assert left == right;
302    
303     /*
304     * The invariants still hold: pivot >= all in [lo, left) and
305     * pivot < all in [left, start), so pivot belongs at left. Note
306     * that if there are elements equal to pivot, left points to the
307     * first slot after them -- that's why this sort is stable.
308 dl 1.7 * Slide elements over to make room for pivot.
309 jsr166 1.1 */
310     int n = start - left; // The number of elements to move
311     // Switch is just an optimization for arraycopy in default case
312 jsr166 1.4 switch (n) {
313 jsr166 1.1 case 2: a[left + 2] = a[left + 1];
314     case 1: a[left + 1] = a[left];
315     break;
316     default: System.arraycopy(a, left, a, left + 1, n);
317     }
318     a[left] = pivot;
319     }
320     }
321    
322     /**
323     * Returns the length of the run beginning at the specified position in
324     * the specified array and reverses the run if it is descending (ensuring
325     * that the run will always be ascending when the method returns).
326     *
327     * A run is the longest ascending sequence with:
328     *
329     * a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
330     *
331     * or the longest descending sequence with:
332     *
333     * a[lo] > a[lo + 1] > a[lo + 2] > ...
334     *
335     * For its intended use in a stable mergesort, the strictness of the
336     * definition of "descending" is needed so that the call can safely
337     * reverse a descending sequence without violating stability.
338     *
339     * @param a the array in which a run is to be counted and possibly reversed
340     * @param lo index of the first element in the run
341     * @param hi index after the last element that may be contained in the run.
342 jsr166 1.8 * It is required that {@code lo < hi}.
343 jsr166 1.1 * @param c the comparator to used for the sort
344     * @return the length of the run beginning at the specified position in
345     * the specified array
346     */
347     private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
348     Comparator<? super T> c) {
349     assert lo < hi;
350     int runHi = lo + 1;
351     if (runHi == hi)
352     return 1;
353    
354     // Find end of run, and reverse range if descending
355     if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
356 jsr166 1.4 while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
357 jsr166 1.1 runHi++;
358     reverseRange(a, lo, runHi);
359     } else { // Ascending
360     while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
361     runHi++;
362     }
363    
364     return runHi - lo;
365     }
366    
367     /**
368     * Reverse the specified range of the specified array.
369     *
370     * @param a the array in which a range is to be reversed
371     * @param lo the index of the first element in the range to be reversed
372     * @param hi the index after the last element in the range to be reversed
373     */
374     private static void reverseRange(Object[] a, int lo, int hi) {
375     hi--;
376     while (lo < hi) {
377     Object t = a[lo];
378     a[lo++] = a[hi];
379 jsr166 1.2 a[hi--] = t;
380 jsr166 1.1 }
381     }
382    
383     /**
384     * Returns the minimum acceptable run length for an array of the specified
385     * length. Natural runs shorter than this will be extended with
386     * {@link #binarySort}.
387     *
388     * Roughly speaking, the computation is:
389     *
390     * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
391     * Else if n is an exact power of 2, return MIN_MERGE/2.
392     * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
393     * is close to, but strictly less than, an exact power of 2.
394     *
395     * For the rationale, see listsort.txt.
396     *
397     * @param n the length of the array to be sorted
398     * @return the length of the minimum run to be merged
399     */
400     private static int minRunLength(int n) {
401     assert n >= 0;
402     int r = 0; // Becomes 1 if any 1 bits are shifted off
403     while (n >= MIN_MERGE) {
404     r |= (n & 1);
405     n >>= 1;
406     }
407     return n + r;
408     }
409    
410     /**
411     * Pushes the specified run onto the pending-run stack.
412     *
413     * @param runBase index of the first element in the run
414     * @param runLen the number of elements in the run
415     */
416     private void pushRun(int runBase, int runLen) {
417     this.runBase[stackSize] = runBase;
418     this.runLen[stackSize] = runLen;
419     stackSize++;
420     }
421    
422     /**
423     * Examines the stack of runs waiting to be merged and merges adjacent runs
424     * until the stack invariants are reestablished:
425     *
426     * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
427     * 2. runLen[i - 2] > runLen[i - 1]
428     *
429     * This method is called each time a new run is pushed onto the stack,
430     * so the invariants are guaranteed to hold for i < stackSize upon
431     * entry to the method.
432 dl 1.7 *
433     * Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
434     * Richard Bubel and Reiner Hahnle, this is fixed with respect to
435     * the analysis in "On the Worst-Case Complexity of TimSort" by
436     * Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
437 jsr166 1.1 */
438     private void mergeCollapse() {
439     while (stackSize > 1) {
440     int n = stackSize - 2;
441 dl 1.7 if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
442     n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
443 jsr166 1.1 if (runLen[n - 1] < runLen[n + 1])
444     n--;
445 dl 1.7 } else if (n < 0 || runLen[n] > runLen[n + 1]) {
446 jsr166 1.1 break; // Invariant is established
447     }
448 dl 1.7 mergeAt(n);
449 jsr166 1.1 }
450     }
451    
452     /**
453     * Merges all runs on the stack until only one remains. This method is
454     * called once, to complete the sort.
455     */
456     private void mergeForceCollapse() {
457     while (stackSize > 1) {
458     int n = stackSize - 2;
459     if (n > 0 && runLen[n - 1] < runLen[n + 1])
460     n--;
461     mergeAt(n);
462     }
463     }
464    
465     /**
466     * Merges the two runs at stack indices i and i+1. Run i must be
467     * the penultimate or antepenultimate run on the stack. In other words,
468     * i must be equal to stackSize-2 or stackSize-3.
469     *
470     * @param i stack index of the first of the two runs to merge
471     */
472     private void mergeAt(int i) {
473     assert stackSize >= 2;
474     assert i >= 0;
475     assert i == stackSize - 2 || i == stackSize - 3;
476    
477     int base1 = runBase[i];
478     int len1 = runLen[i];
479     int base2 = runBase[i + 1];
480     int len2 = runLen[i + 1];
481     assert len1 > 0 && len2 > 0;
482     assert base1 + len1 == base2;
483    
484     /*
485     * Record the length of the combined runs; if i is the 3rd-last
486     * run now, also slide over the last run (which isn't involved
487     * in this merge). The current run (i+1) goes away in any case.
488     */
489     runLen[i] = len1 + len2;
490     if (i == stackSize - 3) {
491     runBase[i + 1] = runBase[i + 2];
492     runLen[i + 1] = runLen[i + 2];
493     }
494     stackSize--;
495    
496     /*
497     * Find where the first element of run2 goes in run1. Prior elements
498     * in run1 can be ignored (because they're already in place).
499     */
500     int k = gallopRight(a[base2], a, base1, len1, 0, c);
501     assert k >= 0;
502     base1 += k;
503     len1 -= k;
504     if (len1 == 0)
505     return;
506    
507     /*
508     * Find where the last element of run1 goes in run2. Subsequent elements
509     * in run2 can be ignored (because they're already in place).
510     */
511     len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
512     assert len2 >= 0;
513     if (len2 == 0)
514     return;
515    
516     // Merge remaining runs, using tmp array with min(len1, len2) elements
517     if (len1 <= len2)
518     mergeLo(base1, len1, base2, len2);
519     else
520     mergeHi(base1, len1, base2, len2);
521     }
522    
523     /**
524     * Locates the position at which to insert the specified key into the
525     * specified sorted range; if the range contains an element equal to key,
526     * returns the index of the leftmost equal element.
527     *
528     * @param key the key whose insertion point to search for
529     * @param a the array in which to search
530     * @param base the index of the first element in the range
531     * @param len the length of the range; must be > 0
532     * @param hint the index at which to begin the search, 0 <= hint < n.
533     * The closer hint is to the result, the faster this method will run.
534     * @param c the comparator used to order the range, and to search
535     * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
536     * pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
537     * In other words, key belongs at index b + k; or in other words,
538     * the first k elements of a should precede key, and the last n - k
539     * should follow it.
540     */
541     private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
542     Comparator<? super T> c) {
543     assert len > 0 && hint >= 0 && hint < len;
544     int lastOfs = 0;
545     int ofs = 1;
546     if (c.compare(key, a[base + hint]) > 0) {
547     // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
548     int maxOfs = len - hint;
549     while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
550     lastOfs = ofs;
551     ofs = (ofs << 1) + 1;
552     if (ofs <= 0) // int overflow
553     ofs = maxOfs;
554     }
555     if (ofs > maxOfs)
556     ofs = maxOfs;
557    
558     // Make offsets relative to base
559     lastOfs += hint;
560     ofs += hint;
561     } else { // key <= a[base + hint]
562     // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
563     final int maxOfs = hint + 1;
564     while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
565     lastOfs = ofs;
566     ofs = (ofs << 1) + 1;
567     if (ofs <= 0) // int overflow
568     ofs = maxOfs;
569     }
570     if (ofs > maxOfs)
571     ofs = maxOfs;
572    
573     // Make offsets relative to base
574     int tmp = lastOfs;
575     lastOfs = hint - ofs;
576     ofs = hint - tmp;
577     }
578     assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
579    
580     /*
581     * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
582     * to the right of lastOfs but no farther right than ofs. Do a binary
583     * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
584     */
585     lastOfs++;
586     while (lastOfs < ofs) {
587     int m = lastOfs + ((ofs - lastOfs) >>> 1);
588    
589     if (c.compare(key, a[base + m]) > 0)
590     lastOfs = m + 1; // a[base + m] < key
591     else
592     ofs = m; // key <= a[base + m]
593     }
594     assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
595     return ofs;
596     }
597    
598     /**
599     * Like gallopLeft, except that if the range contains an element equal to
600     * key, gallopRight returns the index after the rightmost equal element.
601     *
602     * @param key the key whose insertion point to search for
603     * @param a the array in which to search
604     * @param base the index of the first element in the range
605     * @param len the length of the range; must be > 0
606     * @param hint the index at which to begin the search, 0 <= hint < n.
607     * The closer hint is to the result, the faster this method will run.
608     * @param c the comparator used to order the range, and to search
609     * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
610     */
611     private static <T> int gallopRight(T key, T[] a, int base, int len,
612     int hint, Comparator<? super T> c) {
613     assert len > 0 && hint >= 0 && hint < len;
614    
615     int ofs = 1;
616     int lastOfs = 0;
617     if (c.compare(key, a[base + hint]) < 0) {
618     // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
619     int maxOfs = hint + 1;
620     while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
621     lastOfs = ofs;
622     ofs = (ofs << 1) + 1;
623     if (ofs <= 0) // int overflow
624     ofs = maxOfs;
625     }
626     if (ofs > maxOfs)
627     ofs = maxOfs;
628    
629     // Make offsets relative to b
630     int tmp = lastOfs;
631     lastOfs = hint - ofs;
632     ofs = hint - tmp;
633     } else { // a[b + hint] <= key
634     // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
635     int maxOfs = len - hint;
636     while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
637     lastOfs = ofs;
638     ofs = (ofs << 1) + 1;
639     if (ofs <= 0) // int overflow
640     ofs = maxOfs;
641     }
642     if (ofs > maxOfs)
643     ofs = maxOfs;
644    
645     // Make offsets relative to b
646     lastOfs += hint;
647     ofs += hint;
648     }
649     assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
650    
651     /*
652     * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
653     * the right of lastOfs but no farther right than ofs. Do a binary
654     * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
655     */
656     lastOfs++;
657     while (lastOfs < ofs) {
658     int m = lastOfs + ((ofs - lastOfs) >>> 1);
659    
660     if (c.compare(key, a[base + m]) < 0)
661     ofs = m; // key < a[b + m]
662     else
663     lastOfs = m + 1; // a[b + m] <= key
664     }
665     assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
666     return ofs;
667     }
668    
669     /**
670     * Merges two adjacent runs in place, in a stable fashion. The first
671     * element of the first run must be greater than the first element of the
672     * second run (a[base1] > a[base2]), and the last element of the first run
673     * (a[base1 + len1-1]) must be greater than all elements of the second run.
674     *
675     * For performance, this method should be called only when len1 <= len2;
676     * its twin, mergeHi should be called if len1 >= len2. (Either method
677     * may be called if len1 == len2.)
678     *
679     * @param base1 index of first element in first run to be merged
680     * @param len1 length of first run to be merged (must be > 0)
681     * @param base2 index of first element in second run to be merged
682     * (must be aBase + aLen)
683     * @param len2 length of second run to be merged (must be > 0)
684     */
685     private void mergeLo(int base1, int len1, int base2, int len2) {
686     assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
687    
688     // Copy first run into temp array
689     T[] a = this.a; // For performance
690     T[] tmp = ensureCapacity(len1);
691 dl 1.7 int cursor1 = tmpBase; // Indexes into tmp array
692 jsr166 1.1 int cursor2 = base2; // Indexes int a
693     int dest = base1; // Indexes int a
694 dl 1.7 System.arraycopy(a, base1, tmp, cursor1, len1);
695 jsr166 1.1
696     // Move first element of second run and deal with degenerate cases
697     a[dest++] = a[cursor2++];
698     if (--len2 == 0) {
699     System.arraycopy(tmp, cursor1, a, dest, len1);
700     return;
701     }
702     if (len1 == 1) {
703     System.arraycopy(a, cursor2, a, dest, len2);
704     a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
705     return;
706     }
707    
708     Comparator<? super T> c = this.c; // Use local variable for performance
709     int minGallop = this.minGallop; // " " " " "
710     outer:
711     while (true) {
712     int count1 = 0; // Number of times in a row that first run won
713     int count2 = 0; // Number of times in a row that second run won
714    
715     /*
716     * Do the straightforward thing until (if ever) one run starts
717     * winning consistently.
718     */
719     do {
720     assert len1 > 1 && len2 > 0;
721     if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
722     a[dest++] = a[cursor2++];
723     count2++;
724     count1 = 0;
725     if (--len2 == 0)
726     break outer;
727     } else {
728     a[dest++] = tmp[cursor1++];
729     count1++;
730     count2 = 0;
731     if (--len1 == 1)
732     break outer;
733     }
734     } while ((count1 | count2) < minGallop);
735    
736     /*
737     * One run is winning so consistently that galloping may be a
738     * huge win. So try that, and continue galloping until (if ever)
739     * neither run appears to be winning consistently anymore.
740     */
741     do {
742     assert len1 > 1 && len2 > 0;
743     count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
744     if (count1 != 0) {
745     System.arraycopy(tmp, cursor1, a, dest, count1);
746     dest += count1;
747     cursor1 += count1;
748     len1 -= count1;
749     if (len1 <= 1) // len1 == 1 || len1 == 0
750     break outer;
751     }
752     a[dest++] = a[cursor2++];
753     if (--len2 == 0)
754     break outer;
755    
756     count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
757     if (count2 != 0) {
758     System.arraycopy(a, cursor2, a, dest, count2);
759     dest += count2;
760     cursor2 += count2;
761     len2 -= count2;
762     if (len2 == 0)
763     break outer;
764     }
765     a[dest++] = tmp[cursor1++];
766     if (--len1 == 1)
767     break outer;
768     minGallop--;
769     } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
770     if (minGallop < 0)
771     minGallop = 0;
772     minGallop += 2; // Penalize for leaving gallop mode
773     } // End of "outer" loop
774     this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
775    
776     if (len1 == 1) {
777     assert len2 > 0;
778     System.arraycopy(a, cursor2, a, dest, len2);
779     a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
780     } else if (len1 == 0) {
781     throw new IllegalArgumentException(
782     "Comparison method violates its general contract!");
783     } else {
784     assert len2 == 0;
785     assert len1 > 1;
786     System.arraycopy(tmp, cursor1, a, dest, len1);
787     }
788     }
789    
790     /**
791     * Like mergeLo, except that this method should be called only if
792     * len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
793     * may be called if len1 == len2.)
794     *
795     * @param base1 index of first element in first run to be merged
796     * @param len1 length of first run to be merged (must be > 0)
797     * @param base2 index of first element in second run to be merged
798     * (must be aBase + aLen)
799     * @param len2 length of second run to be merged (must be > 0)
800     */
801     private void mergeHi(int base1, int len1, int base2, int len2) {
802     assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
803    
804     // Copy second run into temp array
805     T[] a = this.a; // For performance
806     T[] tmp = ensureCapacity(len2);
807 dl 1.7 int tmpBase = this.tmpBase;
808     System.arraycopy(a, base2, tmp, tmpBase, len2);
809 jsr166 1.1
810     int cursor1 = base1 + len1 - 1; // Indexes into a
811 dl 1.7 int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
812 jsr166 1.1 int dest = base2 + len2 - 1; // Indexes into a
813    
814     // Move last element of first run and deal with degenerate cases
815     a[dest--] = a[cursor1--];
816     if (--len1 == 0) {
817 dl 1.7 System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
818 jsr166 1.1 return;
819     }
820     if (len2 == 1) {
821     dest -= len1;
822     cursor1 -= len1;
823     System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
824     a[dest] = tmp[cursor2];
825     return;
826     }
827    
828     Comparator<? super T> c = this.c; // Use local variable for performance
829     int minGallop = this.minGallop; // " " " " "
830     outer:
831     while (true) {
832     int count1 = 0; // Number of times in a row that first run won
833     int count2 = 0; // Number of times in a row that second run won
834    
835     /*
836     * Do the straightforward thing until (if ever) one run
837     * appears to win consistently.
838     */
839     do {
840     assert len1 > 0 && len2 > 1;
841     if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
842     a[dest--] = a[cursor1--];
843     count1++;
844     count2 = 0;
845     if (--len1 == 0)
846     break outer;
847     } else {
848     a[dest--] = tmp[cursor2--];
849     count2++;
850     count1 = 0;
851     if (--len2 == 1)
852     break outer;
853     }
854     } while ((count1 | count2) < minGallop);
855    
856     /*
857     * One run is winning so consistently that galloping may be a
858     * huge win. So try that, and continue galloping until (if ever)
859     * neither run appears to be winning consistently anymore.
860     */
861     do {
862     assert len1 > 0 && len2 > 1;
863     count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
864     if (count1 != 0) {
865     dest -= count1;
866     cursor1 -= count1;
867     len1 -= count1;
868     System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
869     if (len1 == 0)
870     break outer;
871     }
872     a[dest--] = tmp[cursor2--];
873     if (--len2 == 1)
874     break outer;
875    
876 dl 1.7 count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
877 jsr166 1.1 if (count2 != 0) {
878     dest -= count2;
879     cursor2 -= count2;
880     len2 -= count2;
881     System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
882     if (len2 <= 1) // len2 == 1 || len2 == 0
883     break outer;
884     }
885     a[dest--] = a[cursor1--];
886     if (--len1 == 0)
887     break outer;
888     minGallop--;
889     } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
890     if (minGallop < 0)
891     minGallop = 0;
892     minGallop += 2; // Penalize for leaving gallop mode
893     } // End of "outer" loop
894     this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
895    
896     if (len2 == 1) {
897     assert len1 > 0;
898     dest -= len1;
899     cursor1 -= len1;
900     System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
901     a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
902     } else if (len2 == 0) {
903     throw new IllegalArgumentException(
904     "Comparison method violates its general contract!");
905     } else {
906     assert len1 == 0;
907     assert len2 > 0;
908 dl 1.7 System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
909 jsr166 1.1 }
910     }
911    
912     /**
913     * Ensures that the external array tmp has at least the specified
914     * number of elements, increasing its size if necessary. The size
915     * increases exponentially to ensure amortized linear time complexity.
916     *
917     * @param minCapacity the minimum required capacity of the tmp array
918     * @return tmp, whether or not it grew
919     */
920     private T[] ensureCapacity(int minCapacity) {
921 dl 1.7 if (tmpLen < minCapacity) {
922 jsr166 1.1 // Compute smallest power of 2 > minCapacity
923 dl 1.7 int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
924 jsr166 1.1 newSize++;
925    
926     if (newSize < 0) // Not bloody likely!
927     newSize = minCapacity;
928     else
929     newSize = Math.min(newSize, a.length >>> 1);
930    
931     @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
932 dl 1.7 T[] newArray = (T[])java.lang.reflect.Array.newInstance
933     (a.getClass().getComponentType(), newSize);
934 jsr166 1.1 tmp = newArray;
935 dl 1.7 tmpLen = newSize;
936     tmpBase = 0;
937 jsr166 1.1 }
938     return tmp;
939     }
940     }